Graphical Abstract Figure

Ethylene mass fraction distribution at different moments with baffles installed in the channel

Graphical Abstract Figure

Ethylene mass fraction distribution at different moments with baffles installed in the channel

Close modal

Abstract

The centripetal wave rotor combustor can better match the centrifugal compressor and the axial turbine of the reference machine, reduce the size of the engine and simplify the transition section structure. In this paper, we use numerical simulations to investigate the effects of blade shape and blade deflection angle on the unsteady flow mixing characteristics of the centripetal wave rotor combustor and complete the optimization of its structure. It is shown that in all designed channels, flow separation is present. The circumferential shear forces and pressure gradient forces contribute to the uneven distribution of the mixture within the channel, and their effects are irremovable. When the blade curve is tangent to the line connecting the endpoint of the inner diameter and the rotor center, it facilitates a particular configuration. This blade shape can enhance the uniformity of the fuel-air mixture distribution within the channel. The blade deflection angle has little effect on the fuel-air mixture distribution, the pressure distribution, and the prepressurization effect in the channel. Changing the width-to-diameter ratio of the channel, or the size of the ports and the phase difference can improve the distribution of the fuel-air mixture in the channel, and both of them are also the key factors affecting the prepressurization effect.

References

1.
Akbari
,
P.
,
Nalim
,
R.
, and
Snyder
,
P.
,
2006
, “
Numerical Simulation and Design of a Combustion Wave Rotor for Deflagrative and Detonative Propagation
,”
AIAA
Paper No. 2006-5134.10.2514/6.2006-5134
2.
Akbari
,
P.
, and
Nalim
,
M. R.
,
2009
, “
Review of Recent Developments in Wave Rotor Combustion Technology
,”
J. Propul. Power
,
25
(
4
), pp.
833
844
.10.2514/1.34081
3.
Kiran
,
R.
,
Wijeyakulasuriya
,
S.
,
Müller
,
N.
, and
Piechna
,
J.
,
2012
Thermodynamic Cycle Efficiency Enhancement in a Wave Disk Engine by re-Injection of Combusted Gas for Pre-Compression
,”
AIAA
Paper No. 2012-4170.10.2514/6.2012-4170
4.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
717
735
.10.1115/1.2204628
5.
Akbari
,
P.
,
Szpynda
,
E.
, and
Nalim
,
R.
,
2007
, “
Recent Developments in Wave Rotor Combustion Technology and Future Perspectives: A Progress Review
,”
AIAA
Paper No. 2007-5055.10.2514/6.2007-5055
6.
Piechna
,
J.
,
Akbari
,
P.
,
Iancu
,
F.
, and
Müller
,
N.
,
2004
, “
Radial-Flow Wave Rotor Concepts, Unconventional Designs and Applications
,”
ASME
Paper No. IMECE2004-59022.10.1115/IMECE2004-59022
7.
Parraga-Ramirez
,
P. F.
,
2013
, “Practical Power and Combustion Investigations on First Wave Disk Engine Prototypes,”
Ph.D thesis
, Mechanical Engineering, Michigan State University, East Lansing, MI.http://etd.lib.msu.edu/islandora/object/etd:2244
8.
Iancu
,
F.
,
Zhu
,
X.
,
Tang
,
Y.
,
Alsam
,
D.
, and
Müller
,
N.
,
2007
, “
Design and Fabrication of Microchannel Test Rig for Ultra-Micro Wave Rotors
,”
Microsyst. Technologies
,
14
(
1
), pp.
79
88
.10.1007/s00542-007-0402-5
9.
Chen
,
L.
,
Lin
,
J.
,
Sun
,
F.
, and
Wu
,
C.
,
1998
, “
Efficiency of an Atkinson Engine at Maximum Power Density
,”
Energy Convers. Manage.
,
39
(
3–4
), pp.
337
341
.10.1016/S0196-8904(96)00195-1
10.
Gong
,
E.
,
Hao
,
Y.
, and
Cao
,
X.
,
2023
, “
Research on the Working Characteristics of Wave Rotor Combustor Hot Jet Igniter and Its Validation
,”
Appl. Therm. Eng.
,
235
, p.
121407
.10.1016/j.applthermaleng.2023.121407
11.
Gong
,
E.
,
Lan
,
T.
,
Hao
,
Y.
, and
Li
,
J.
,
2023
, “
Experimental Research on Ignition Characteristics of Hot Jet Matched With Single-Channel Wave Rotor Combustor
,”
Case Stud. Therm. Eng.
,
50
, p.
103471
.10.1016/j.csite.2023.103471
12.
Sun
,
G.
,
Akbari
,
P.
,
Gower
,
B.
, and
Mueller
,
N.
,
2012
, “
Thermodynamics of the Wave Disk Engine
,”
AIAA
Paper No. 2012-3704.10.2514/6.2012-3704
13.
Zheng
,
R.
,
Gong
,
E.
,
Li
,
J.
,
Yao
,
Q.
, and
Nie
,
Z.
,
2024
, “
Performance Analysis of Wave Rotor Combustor Integration Into Baseline Engines: A Comparative Study of Pressure-Gain and Work Cycles
,”
Energies
,
17
(
9
), p.
2074
.10.3390/en17092074
14.
Akbari
,
P.
,
Nalim
,
R.
, and
Li
,
H.
,
2006
, “
Analytic Aerothermodynamic Cycle Model of the Combustion Wave Rotor in a Gas Turbine Engine
,”
AIAA
Paper No. 2006-4176.10.2514/6.2006-4176
15.
Akbari
,
P.
, and
Agoos
,
I.
,
2017
, “
Two-Stage Wave Disk Engine Concept and Performance Prediction
,”
SAE
Paper No. 2017-01-2046.10.4271/2017-01-2046
16.
Wilson
,
J.
, and
Paxson
,
D. E.
,
1996
, Jul;“
Wave Rotor Optimization for Gas Turbine Engine Topping Cycles
,”
J. Propul. Power
,
12
(
4
), pp.
778
785
.10.2514/3.24101
17.
Akbari
,
P.
, and
Mueller
,
N.
,
2005
, “
Wave Rotor Research Program at Michigan State University
,”
AIAA
Paper No. 2005-3844.10.2514/6.2005-3844
18.
Jagannath
,
R.
,
Bane
,
S. P.
,
Feyz
,
M. E.
, and
Nalim
,
M. R.
,
2017
Assessment of Incidence Loss and Shaft Work Production for Wave Rotor Combustor With Non-Axial Channels
,”
AIAA
Paper No. 2017-1749.10.2514/6.2017-1749
19.
Tüchler
,
S.
, and
Copeland
,
C. D.
,
2020
, “
Validation of a Numerical Quasi-One-Dimensional Model for Wave Rotor Turbines With Curved Channels
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021017
.10.1115/1.4044286
20.
Liu
,
P.
,
Feng
,
M.
,
Liu
,
X.
,
Wang
,
H.
, and
Hu
,
D.
,
2022
, “
Performance Analysis of Wave Rotor Based on Response Surface Optimization Method
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061302
.10.1115/1.4051758
21.
Feng
,
Z.
,
Li
,
J.
,
Gong
,
E.
,
Yao
,
Q.
,
Chen
,
X.
, and
Chen
,
Y.
,
2024
, “
Numerical Study on the Effect of Channel Configuration on Mixture Formation of an Axial Flow Wave Rotor Combustor
,”
ASME J. Fluids Eng.
,
146
(
12
), p.
121202
.10.1115/1.4065543
22.
Tarraf Kojok
,
A.
,
2017
, “
Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures
,”
Masters thesis
, Purdue university, West Lafayette, IN, p.
19
.10.7912/C2/2743
23.
Akbari
,
P.
,
Nalim
,
R.
,
Wijeyakulasuriya
,
S.
, and
Mueller
,
N.
,
2008
, “
Wave Disk Engine for Micro-Scale Power Generation
,”
AIAA
Paper No. 2008–4879.10.2514/6.2008-4879
24.
Hawthorne
,
William
R.
,
1994
, “
R. Tom Sawyer Award Lecture: Reflections on United Kingdom Aircraft Gas Turbine History
,”
ASME J. Eng. Gas Turbines Power.
,
116
(
3
), pp.
495
510
.10.1115/1.2906848
25.
Parraga-Ramirez
,
P.
,
Varney
,
M.
,
Tarkleson
,
E.
, and
Müller
,
N.
, 2012
, “Development of a Wave Disk Engine Experimental Facility,”
AIAA
Paper No. 2012-3703.10.2514/6.2012-3703
26.
Akbari
,
P.
,
Tait
,
C. J.
,
Brady
,
G. M.
,
Polanka
,
M. D.
, and
Sell
,
B.
,
2019
, “
Enhancement of the Radial Wave Engine
,”
AIAA
Paper No. 2019-4037.10.2514/6.2019-4037
27.
Prashad
,
D.
,
2014
, “
Development of Methodology for Designing Wave Disk Engine Based on Wave Dynamics and Thermodynamic Analysis
,”
Masters thesis, Mechanical Engineering, Michigan State University
, East Lansing, MI.
28.
Vagani
,
M.
,
2008
,
Design Considerations for Micro Wave Disc Engines
,
Michigan State University
, East Lansing, MI.
29.
Sun
,
G.
,
2011
, “
Numerical Study of the Aerodynamic Characteristics of a Wave Disc Engine
,” Ph.D. Dissertation,
Mechanical Engineering, Michigan State University
, East Lansing, MI.
30.
Frackowiak
,
M.
,
Iancu
,
F.
,
Potrzebowski
,
A.
,
Akbari
,
P.
,
Mueller
,
N.
, and
Piechna
,
J.
,
2004
, “
Numerical Simulation of Unsteady-Flow Processes in Wave Rotors
,”
ASME
Paper No. IMECE2004-60973.10.1115/IMECE2004-60973
31.
Quispe-Abad
,
R.
,
2017
, “
Torque Generation During the Unsteady Expansion Process in Curved Channels of a Wave Disc Engine
,” Mechanical Engineering, Michigan State University, East Lansing, MI.
32.
Najim
,
Y. M.
,
Mueller
,
N.
, and
Wichman
,
I. S.
,
2015
, “
On Premixed Flame Propagation in a Curved Constant Volume Channel
,”
Combust. Flame
,
162
(
10
), pp.
3980
3990
.10.1016/j.combustflame.2015.07.037
33.
Li
,
J.
,
Yuan
,
L.
,
Li
,
W.
, and
Zhang
,
K.
,
2018
, “
Numerical Investigation of Combustion Characteristics of a Wave Rotor Combustor Based on a Reduced Reaction Mechanism of Ethylene
,”
Int. J. Aerosp. Eng.
,
2018
(
1
), p. 8672760.10.1155/2018/8672760
34.
Issa
,
R. I.
,
1986
, Jan 1;“
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
You do not currently have access to this content.