Abstract

In urban settings, vertical axis wind turbines (VAWTs) have gained recognition for their ease of usage and omnidirectional wind acceptance. Their low efficiency in comparison to horizontal axis wind turbines (HAWTs) has prevented them from being extensively utilized, though. A viable solution to this constraint is duct augmentation, which aims to increase airflow and, consequently, the capacity to harvest energy. This study investigates the integration of a duct in the wind turbine system to enhance the performance of VAWT. This work reports a two-dimensional (2D) numerical simulation of a ducted VAWT using a standard blade profile NACA0017 of National Advisory Committee for Aeronautics (NACA) to evaluate its performance in comparison to that of a bare VAWT. Furthermore, a thorough examination of torque ripple factor, coefficient of power (CP), instantaneous net torque coefficients, wake velocity deficit, turbulent intensity and vorticity distribution surrounding the duct is conducted. While the tip speed ratio (TSR) value for bare VAWT with NACA0017 airfoils corresponding to highest CP is 3, this value shifts to 3.5 when VAWT is augmented with duct. For ducted VAWT, the range of maximum CP is within 0.5 to 0.7 at TSR 3.5. CP is enhanced by approximately 5 times compared to the bare VAWT for inlet velocities V[3,4m/s]. With increasing wind speed beyond 5 m/s, the CP goes on reducing. The torque ripple factor is found to be lowest at a TSR of 3.5, where the maximum augmentation is achieved.

References

1.
Fatahian
,
E.
,
Ismail
,
F.
,
Ishak
,
M. H. H.
, and
Chang
,
W. S.
,
2022
, “
The Role of Wake Splitter Deflector on Performance Enhancement of Savonius Wind Turbine
,”
Phys. Fluids
,
34
(
9
), p.
095111
.10.1063/5.0111568
2.
Ackermann
,
T.
, and
Söder
,
L.
,
2000
, “
Wind Energy Technology and Current Status: A Review
,”
Renewable Sustainable Energy Rev.
,
4
(
4
), pp.
315
374
.10.1016/S1364-0321(00)00004-6
3.
Rahman
,
S. M.
, and
Chattopadhyay
,
H.
,
2020
, “
A New Approach to Estimate the Weibull Parameters for Wind Energy Assessment: Case Studies With Four Cities From the Northeast and East India
,”
Int. Trans. Electr. Energy Syst.
,
30
(
11
), p.
e12574
.10.1002/2050-7038.12574
4.
Rahman
,
S. M.
, and
Chattopadhyay
,
H.
,
2023
, “
Statistical Assessment of Wind Energy Potential for Power Generation at Imphal, Manipur (India)
,”
Energy Sources, Part A
,
45
(
3
), pp.
7376
7388
.10.1080/15567036.2019.1675814
5.
Mohammed
,
A. A.
,
Ouakad
,
H. M.
,
Sahin
,
A. Z.
, and
Bahaidarah
,
H. M.
,
2019
, “
Vertical Axis Wind Turbine Aerodynamics: Summary and Review of Momentum Models
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
050801
.10.1115/1.4042643
6.
Chen
,
W.-H.
,
Chen
,
C.-Y.
,
Huang
,
C.-Y.
, and
Hwang
,
C.-J.
,
2017
, “
Power Output Analysis and Optimization of Two Straight-Bladed Vertical-Axis Wind Turbines
,”
Appl. Energy
,
185
, pp.
223
232
.10.1016/j.apenergy.2016.10.076
7.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.10.1115/1.4030448
8.
Sagharichi
,
A.
,
Zamani
,
M.
, and
Ghasemi
,
A.
,
2018
, “
Effect of Solidity on the Performance of Variable-Pitch Vertical Axis Wind Turbine
,”
Energy
,
161
, pp.
753
775
.10.1016/j.energy.2018.07.160
9.
Jain
,
S.
, and
Saha
,
U. K.
,
2020
, “
The State-of-the-Art Technology of H-Type Darrieus Wind Turbine Rotors
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
030801
.10.1115/1.4044559
10.
Tayebi
,
A.
, and
Torabi
,
F.
,
2024
, “
Flow Control Techniques to Improve the Aerodynamic Performance of Darrieus Vertical Axis Wind Turbines: A Critical Review
,”
J. Wind Eng. Ind. Aerodyn.
,
252
, p.
105820
.10.1016/j.jweia.2024.105820
11.
Ranjbar
,
M. H.
,
Rafiei
,
B.
,
Nasrazadani
,
S. A.
,
Gharali
,
K.
,
Soltani
,
M.
,
Al-Haq
,
A.
, and
Nathwani
,
J.
,
2021
, “
Power Enhancement of a Vertical Axis Wind Turbine Equipped With an Improved Duct
,”
Energies
,
14
(
18
), p.
5780
.10.3390/en14185780
12.
Karmakar
,
S. D.
, and
Chattopadhyay
,
H.
,
2022
, “
A Review of Augmentation Methods to Enhance the Performance of Vertical Axis Wind Turbine
,”
Sustainable Energy Technol. Assess.
,
53
, p.
102469
.10.1016/j.seta.2022.102469
13.
Kuang
,
L.
,
Su
,
J.
,
Chen
,
Y.
,
Han
,
Z.
,
Zhou
,
D.
,
Zhang
,
K.
,
Zhao
,
Y.
, and
Bao
,
Y.
,
2022
, “
Wind-Capture-Accelerate Device for Performance Improvement of Vertical-Axis Wind Turbines: External Diffuser System
,”
Energy
,
239
, p.
122196
.10.1016/j.energy.2021.122196
14.
Ayaz
,
A.
,
Israr
,
A.
, and
Khan
,
M. Z.
,
2023
, “
Numerical and Experimental Investigation of Geometric Parameters Influence on Power Generation of Invelox Wind Turbine
,”
Energy Sustainable Develop.
,
77
, p.
101329
.10.1016/j.esd.2023.101329
15.
Verma
,
M.
, and
De
,
A.
,
2023
, “
Performance Analysis of Vertical-Axis Wind Turbine Clusters: Effect of Inter-Turbine Spacing and Turbine Rotation
,”
Phys. Fluids
,
35
(
10
), p.
105122
.10.1063/5.0169060
16.
Manganhar
,
A. L.
,
Rajpar
,
A. H.
,
Luhur
,
M. R.
,
Samo
,
S. R.
, and
Manganhar
,
M.
,
2019
, “
Performance Analysis of a Savonius Vertical Axis Wind Turbine Integrated With Wind Accelerating and Guiding Rotor House
,”
Renewable Energy
,
136
, pp.
512
520
.10.1016/j.renene.2018.12.124
17.
Avallone
,
F.
,
Ragni
,
D.
, and
Casalino
,
D.
,
2020
, “
On the Effect of the Tip-Clearance Ratio on the Aeroacoustics of a Diffuser-Augmented Wind Turbine
,”
Renewable Energy
,
152
, pp.
1317
1327
.10.1016/j.renene.2020.01.064
18.
Dilimulati
,
A.
,
Stathopoulos
,
T.
, and
Paraschivoiu
,
M.
,
2018
, “
Wind Turbine Designs for Urban Applications: A Case Study of Shrouded Diffuser Casing for Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
175
, pp.
179
192
.10.1016/j.jweia.2018.01.003
19.
Bontempo
,
R.
, and
Manna
,
M.
,
2020
, “
Diffuser Augmented Wind Turbines: Review and Assessment of Theoretical Models
,”
Appl. Energy
,
280
, p.
115867
.10.1016/j.apenergy.2020.115867
20.
Bontempo
,
R.
, and
Manna
,
M.
,
2016
, “
Effects of the Duct Thrust on the Performance of Ducted Wind Turbines
,”
Energy
,
99
, pp.
274
287
.10.1016/j.energy.2016.01.025
21.
Van Bussel
,
G. J.
,
2007
, “
The Science of Making More Torque From Wind: Diffuser Experiments and Theory Revisited
,”
J. Phys.: Conf. Ser.
,
75
, p.
012010
.10.1088/1742-6596/75/1/012010
22.
Heikal
,
H. A.
,
Abu-Elyazeed
,
O. S.
,
Nawar
,
M. A.
,
Attai
,
Y. A.
, and
Mohamed
,
M. M.
,
2018
, “
On the Actual Power Coefficient by Theoretical Developing of the Diffuser Flange of Wind-Lens Turbine
,”
Renewable Energy
,
125
, pp.
295
305
.10.1016/j.renene.2018.02.100
23.
Nurur Rochman
,
M.
,
Nasution
,
A.
, and
Nugroho
,
G.
,
2017
, “
CFD Studies on the Flanged Diffuser Augmented Wind Turbine With Optimized Curvature Wall
,”
ICoSI 2014: Proceedings of the 2nd International Conference on Sustainable Innovation
, Singapore, June 3–5, pp.
347
355
.10.1007/978-981-287-661-4_35
24.
Kosasih
,
B.
, and
Tondelli
,
A.
,
2012
, “
Experimental Study of Shrouded Micro-Wind Turbine
,”
Proc. Eng.
,
49
, pp.
92
98
.10.1016/j.proeng.2012.10.116
25.
El-Zahaby
,
A. M.
,
Kabeel
,
A.
,
Elsayed
,
S.
, and
Obiaa
,
M.
,
2017
, “
CFD Analysis of Flow Fields for Shrouded Wind Turbine's Diffuser Model With Different Flange Angles
,”
Alexandria Eng. J.
,
56
(
1
), pp.
171
179
.10.1016/j.aej.2016.08.036
26.
Ranjbar
,
M. H.
,
Nasrazadani
,
S. A.
, and
Gharali
,
K.
,
2017
, “
Optimization of a Flanged DAWT Using a CFD Actuator Disc Method
,”
International Conference on Applied Mathematics, Modeling and Computational Science
, Waterloo, ON, Canada, Aug. 20–25, pp.
219
228
.10.1007/978-3-319-99719-3_20
27.
Ding
,
C.
,
Zhang
,
B.
,
Liang
,
C.
,
Visser
,
K.
, and
Yao
,
G.
,
2023
, “
High-Order Large Eddy Simulations of a Wind Turbine in Ducted and Open-Rotor Configurations
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021201
.10.1115/1.4055989
28.
Safford
,
D. A.
,
Wang
,
J.
,
Liang
,
C.
, and
Visser
,
K.
,
2024
, “
Unsteady Reynolds-Averaged Navier–Stokes Simulations of a Ducted Wind Turbine
,”
ASME J. Fluids Eng.
,
146
(
3
), p.
031202
.10.1115/1.4063615
29.
Watanabe
,
K.
,
Takahashi
,
S.
, and
Ohya
,
Y.
,
2016
, “
Application of a Diffuser Structure to Vertical-Axis Wind Turbines
,”
Energies
,
9
(
6
), p.
406
.10.3390/en9060406
30.
Zanforlin
,
S.
, and
Letizia
,
S.
,
2019
, “
Effects of Upstream Buildings on the Performance of a Synergistic Roof-and-Diffuser Augmentation System for Cross Flow Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
184
, pp.
329
341
.10.1016/j.jweia.2018.11.029
31.
Hashem
,
I.
, and
Mohamed
,
M.
,
2018
, “
Aerodynamic Performance Enhancements of h-Rotor Darrieus Wind Turbine
,”
Energy
,
142
, pp.
531
545
.10.1016/j.energy.2017.10.036
32.
Ghazalla
,
R.
,
Mohamed
,
M.
, and
Hafiz
,
A.
,
2019
, “
Synergistic Analysis of a Darrieus Wind Turbine Using Computational Fluid Dynamics
,”
Energy
,
189
, p.
116214
.10.1016/j.energy.2019.116214
33.
Krishnan
,
A.
,
Al-Obaidi
,
A. S. M.
, and
Hao
,
L. C.
,
2023
, “
A Comprehensive Review of Innovative Wind Turbine Airfoil and Blade Designs: Toward Enhanced Efficiency and Sustainability
,”
Sustainable Energy Technol. Assess.
,
60
, p.
103511
.10.1016/j.seta.2023.103511
34.
Durrani
,
N.
,
Hameed
,
H.
,
Rahman
,
H.
, and
Chaudhry
,
S.
,
2011
, “
A Detailed Aerodynamic Design and Analysis of a 2-D Vertical Axis Wind Turbine Using Sliding Mesh in CFD
,”
AIAA
Paper No. 2011-241.10.2514/6.2011-241
35.
Maalouly
,
M.
,
Souaiby
,
M.
,
ElCheikh
,
A.
,
Issa
,
J.
, and
Elkhoury
,
M.
,
2022
, “
Transient Analysis of h-Type Vertical Axis Wind Turbines Using CFD
,”
Energy Rep.
,
8
, pp.
4570
4588
.10.1016/j.egyr.2022.03.136
36.
Karmakar
,
S. D.
,
Rahman
,
S. M.
, and
Chattopadhyay
,
H.
,
2023
, “
Numerical Investigations on the Performance of Darrieus Vertical Axis Wind Turbine With NACA0017 Blade Profile
,”
Prog. Comput. Fluid Dyn.
,
23
(
5
), pp.
292
302
.10.1504/PCFD.2023.134191
37.
Rezaeiha
,
A.
,
Kalkman
,
I.
, and
Blocken
,
B.
,
2017
, “
CFD Simulation of a Vertical Axis Wind Turbine Operating at a Moderate Tip Speed Ratio: Guidelines for Minimum Domain Size and Azimuthal Increment
,”
Renewable Energy
,
107
, pp.
373
385
.10.1016/j.renene.2017.02.006
38.
Abdullah
,
M.
,
Ishak
,
M.
, and
Ismail
,
F.
,
2023
, “
Performance Improvement of the Savonius Turbine Using a Novel Augmentation Device With the Taguchi Optimization Method
,”
Phys. Fluids
,
35
(
1
), p.
015108
.10.1063/5.0131537
39.
Hansen
,
M. O. L.
,
Sørensen
,
N. N.
, and
Flay
,
R.
,
2000
, “
Effect of Placing a Diffuser Around a Wind Turbine
,”
Wind Energy
,
3
(
4
), pp.
207
213
.10.1002/we.37
40.
Cresswell
,
N.
,
Ingram
,
G.
, and
Dominy
,
R.
,
2015
, “
The Impact of Diffuser Augmentation on a Tidal Stream Turbine
,”
Ocean Eng.
,
108
, pp.
155
163
.10.1016/j.oceaneng.2015.07.033
41.
Kwong
,
A. H.
, and
Dowling
,
A. P.
,
1994
, “
Active Boundary-Layer Control in Diffusers
,”
AIAA J.
,
32
(
12
), pp.
2409
2414
.10.2514/3.12307
42.
Mujibur Rahman
,
S.
,
Chattopadhyay
,
H.
, and
Dutta
,
P.
,
2024
, “
Computational Fluid Dynamics Analysis on Performance Assessment of Darrieus-Type Vertical Axis Wind Turbine Using NACA0016, NACA0019 and NACA0020 Airfoil Sections
,”
Int. J. Ambient Energy
,
45
(
1
), p.
2315489
.10.1080/01430750.2024.2315489
43.
Zare Chavoshi
,
M.
, and
Ebrahimi
,
A.
,
2022
, “
Plasma Actuator Effects on the Flow Physics of Dynamic Stall for a Vertical Axis Wind Turbine
,”
Phys. Fluids
,
34
(
7
), p.
075131
.10.1063/5.0099993
44.
Biswas
,
A.
, and
Gupta
,
R.
,
2014
, “
Unsteady Aerodynamics of a Twist Bladed H-Darrieus Rotor in Low Reynolds Number Flow
,”
J. Renewable Sustainable Energy
,
6
(
3
), p.
033108
.10.1063/1.4878995
45.
Jain
,
S.
, and
Saha
,
U. K.
,
2020
, “
Capturing the Dynamic Stall in H-Type Darrieus Wind Turbines Using Different URANS Turbulence Models
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091302
.10.1115/1.4046730
46.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
, pp.
419
435
.10.1016/j.renene.2015.06.048
47.
Chowdhury
,
A. M.
,
Akimoto
,
H.
, and
Hara
,
Y.
,
2016
, “
Comparative CFD Analysis of Vertical Axis Wind Turbine in Upright and Tilted Configuration
,”
Renewable Energy
,
85
, pp.
327
337
.10.1016/j.renene.2015.06.037
48.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
49.
Jafaryar
,
M.
,
Kamrani
,
R.
,
Gorji-Bandpy
,
M.
,
Hatami
,
M.
, and
Ganji
,
D.
,
2016
, “
Numerical Optimization of the Asymmetric Blades Mounted on a Vertical Axis Cross-Flow Wind Turbine
,”
Int. Commun. Heat Mass Transfer
,
70
, pp.
93
104
.10.1016/j.icheatmasstransfer.2015.12.003
50.
Mazarbhuiya
,
H. M. S. M.
,
Biswas
,
A.
, and
Sharma
,
K. K.
,
2018
, “
Performance Investigations of Modified Asymmetric Blade h-Darrieus Vawt Rotors
,”
J. Renewable Sustainable Energy
,
10
(
3
), p.
033302
.10.1063/1.5026857
51.
Reuter
,
R. C.
, Jr.
,
1980
, “
Torque Ripple in a Darrieus, Vertical Axis Wind Turbine
,”
Sandia National Laboratory (SNL-NM)
,
Albuquerque, NM
, Report No.
SAND-80-0475.
52.
Ryan
,
K. J.
,
Coletti
,
F.
,
Elkins
,
C. J.
,
Dabiri
,
J. O.
, and
Eaton
,
J. K.
,
2016
, “
Three-Dimensional Flow Field Around and Downstream of a Subscale Model Rotating Vertical Axis Wind Turbine
,”
Exp. Fluids
,
57
(
3
), pp. 1–15.10.1007/s00348-016-2122-z
You do not currently have access to this content.