Abstract

Thermoacoustic instability for chemically reacting flows was investigated using large eddy simulations coupled with a lookup table for turbulence-chemistry closure. The onset of instability was evaluated from pressure fluctuations, as well as standard and extended Rayleigh criterion, as suggested in literature. Two configurations were considered, namely, a canonical Rijke tube and a simplified can combustor with a swirling flow injector representing a complex generalized geometry. For the Rijke tube, premixed and nonpremixed combustion models were applied for identical fuel flowrate, resulting in different thermoacoustic outcomes due to differences in reaction rates of the two flame regimes. Results from the Rijke tube case agree with analytic thermoacoustic theory. For the can combustor, only premixed chemistry was considered as it better represents the experimental conditions, and the first resonant pressure mode aligns reasonably with published experimental data. Findings suggest that, if thermoacoustic instability is detected, the resonant frequency can be deduced from the fluctuations of the pressure, heat release, or acoustic source term. However, even though the resonant frequency is correctly identified, fluctuation data alone is insufficient to identify the onset of thermoacoustic instability, requiring the additional application of Rayleigh criterion. Finally, this study concludes that, for the range of configurations evaluated here, the standard Rayleigh criterion is sufficient to determine the onset of thermoacoustic instability, so the extended Rayleigh criterion is not always necessary, in contrast to suggestions from previous work. This conclusion is significant because the standard Rayleigh criterion is the only practical evaluation for physical experiments.

References

1.
Liu
,
X.
,
Qin
,
L.
,
Song
,
Y.
,
Li
,
J.
, and
Yang
,
L.
,
2022
, “
The Effect of Mean Flow on the Intrinsic Thermoacoustic Instabilities in the Duct and Annular Combustion Chambers
,”
Aerosp. Sci. Technol.
,
127
, p.
107691
.10.1016/j.ast.2022.107691
2.
Mori
,
Y.
,
Kishiya
,
S.
,
Kurosaka
,
T.
, and
Gotoda
,
H.
,
2023
, “
Feedback Coupling and Early Detection of Thermoacoustic Combustion Instability
,”
Phys. Rev. Appl.
,
19
(
3
), p.
034097
.10.1103/PhysRevApplied.19.034097
3.
Chehroudi
,
B.
,
2010
, “
Physical Hypothesis for the Combustion Instability in Cryogenic Liquid Rocket Engines
,”
J. Propul. Power
,
26
(
6
), pp.
1153
1160
.10.2514/1.38451
4.
Pavithran
,
I.
,
Unni
,
V. R.
, and
Sujith
,
R.
,
2021
, “
Critical Transitions and Their Early Warning Signals in Thermoacoustic Systems
,”
Eur. Phys. J.-Spec. Top.
,
230
, pp. 3411–3432.10.1140/epjs/s11734-021-00214-w
5.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
, p.
P1
.10.1017/jfm.2020.239
6.
Liu
,
T.
,
Li
,
J.
,
Zhu
,
S.
, and
Yang
,
L.
,
2022
, “
Determination of the Heat Conduction Transfer Function Within the Thermoacoustic Instability Limit Cycle in a Rijke Tube
,”
Appl. Therm. Eng.
,
206
, p.
118084
.10.1016/j.applthermaleng.2022.118084
7.
Balasubramanian
,
K.
, and
Sujith
,
R. I.
,
2008
, “
Thermoacoustic Instability in a Rijke Tube: Non-Normality and Nonlinearity
,”
Phys. Fluids
,
20
, p.
044103
.10.1063/1.2895634
8.
Xi
,
Y.
,
Li
,
X.
,
Wang
,
Y.
,
Xu
,
B.
,
Wang
,
N.
, and
Zhao
,
D.
,
2022
, “
Experimental Study of Transition to Instability in a Rijke Tube With Axially Distributed Heat Source
,”
Int. J. Heat Mass Transfer
,
183
, p.
122157
.10.1016/j.ijheatmasstransfer.2021.122157
9.
Li
,
L.
,
Zhao
,
D.
, and
de Goey
,
L. P. H.
,
2016
, “
Transient Energy Growth Analysis of a Thermoacoustic System With Distributed Mean Heat Input
,”
Int. J. Heat Mass Transfer
,
102
, pp.
287
301
.10.1016/j.ijheatmasstransfer.2016.05.112
10.
Rosenkranz
,
J.-A.
, and
Sattelmayer
,
T.
,
2023
, “
Experimental Investigation of High Frequency Flame Response on Injector Coupling in a Perfectly Premixed Multi-Jet Combustor
,”
ASME J. Eng. Gas Turbine Power
,
145
(
11
), p.
111022
.10.1115/1.4063375
11.
Du
,
M.-L.
,
Li
,
F.-y.
, and
Yang
,
L.-J.
,
2019
, “
Effects of Different Heat Source Distribution on a Rijke Tube
,”
Appl. Acoust.
,
146
, pp.
66
75
.10.1016/j.apacoust.2018.11.011
12.
Reinhardt
,
H.
,
Alanyal Ioğlu
,
Ç.
,
Fischer
,
A.
,
Lahiri
,
C.
, and
Hasse
,
C.
,
2023
, “
A Hybrid, Runtime Coupled Incompressible CFD-CAA Method for Analysis of Thermoacoustic Instabilities
,”
ASME J. Eng. Gas Turbine Power
,
145
(
3
), p.
031003
.10.1115/1.4055666
13.
Rayleigh
,
L.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
455
), pp.
319
321
.10.1038/018319a0
14.
Martin
,
C.
,
Benoit
,
L.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2004
, “
Analysis of Acoustic Energy and Modes in a Turbulent Swirled Combustor
,”
Proceedings of the Summer Program
, Center for Turbulence Research, Stanford University, pp.
377
394
.
15.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “
Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes?
,”
Combust. Flame
,
142
(
1–2
), pp.
153
159
.10.1016/j.combustflame.2005.02.013
16.
Garnier
,
E.
,
Adams
,
N.
, and
Sagaut
,
P.
,
2009
,
Large Eddy Simulation for Compressible Flows
,
Springer
,
Dordrecht, The Netherlands
.
17.
Garby
,
R.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2013
, “
Large-Eddy Simulation of Combustion Instabilities in a Variable-Length Combustor
,”
C. R. Méc.
,
341
(
1–2
), pp.
220
229
.10.1016/j.crme.2012.10.020
18.
Zembi
,
J.
,
Battistoni
,
M.
,
Nambully
,
S. K.
,
Pandal
,
A.
,
Mehl
,
C.
, and
Colin
,
O.
,
2021
, “
LES Investigation of Cycle-to-Cycle Variation in a SI Optical Access Engine Using TFM-AMR Combustion Model
,”
Int. J. Engine Res.
,
23
(
6
), pp.
1027
1046
.10.1177/14680874211005050
19.
Gövert
,
S.
,
Lipkowicz
,
J. T.
, and
Janus
,
B.
,
2024
, “
Compressible Large Eddy Simulation of Thermoacoustic Instabilities in the PRECCINSTA Combustor Using Flamelet Generated Manifolds With Dynamic Thickened Flame Model
,”
ASME. J. Eng. Gas Turbines Power
, 146(1) , p. 011011.10.1115/1.4063419
20.
Kolahan
,
A.
,
Roohi
,
E.
, and
Pendar
,
M.-R.
,
2019
, “
Wavelet Analysis and Frequency Spectrum of Cloud Cavitation Around a Sphere
,”
Ocean Eng.
,
182
, pp.
235
247
.10.1016/j.oceaneng.2019.04.070
21.
Pendar
,
M.-R.
,
Alavi
,
A.
, and
Roohi
,
E.
,
2023
, “
Identification of Frequency Modes and Spectral Content for Noise Suppression: Cavitation Flow Over 3-D Hydrofoil With Sinusoidal Leading Edge
,”
Int. J. Mod. Phys. C
,
34
(
06
), p.
2350074
.10.1142/S0129183123500742
22.
Hunt
,
S.
,
Migliorino
,
M.
,
Scalo
,
C.
, and
Heister
,
S.
,
2021
, “
Onset Criteria for Bulk-Mode Thermoacoustic Instabilities in Supercritical Hydrocarbon Fuels
,”
ASME J. Fluids Eng.
,
143
, p.
040903
.10.1115/1.4049401
23.
Kraus
,
C.
,
Harth
,
S.
, and
Bockhorn
,
H.
,
2016
, “
Experimental Investigation of Combustion Instabilities in Lean Swirl-Stabilized Partially-Premixed Flames in Single- and Multiple-Burner Setup
,”
Int. J. Spray Combust.
,
8
(
1
), pp.
1
23
.10.1177/1756827715627064
24.
Dang
,
N.
,
Zhang
,
J.
, and
Deguchi
,
Y.
,
2021
, “
Numerical Study on the Route of Flame-Induced Thermoacoustic Instability in a Rijke Burner
,”
Appl. Sci.
,
11
(
4
), p.
1590
.10.3390/app11041590
25.
Torregrosa
,
A. J.
,
Broatch
,
A.
,
Gil
,
A.
, and
Gomez-Soriano
,
J.
,
2018
, “
Numerical Approach for Assessing Combustion Noise in Compression-Ignited Diesel Engines
,”
Appl. Acoust.
,
135
, pp.
91
100
.10.1016/j.apacoust.2018.02.006
26.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.10.1016/0360-1285(84)90114-X
27.
Lieuwen
,
T.
,
2003
, “
Modeling Premixed Combustion-Acoustic Wave Interactions: A Review
,”
J. Propul. Power
,
19
(
5
), pp.
765
781
.10.2514/2.6193
28.
Cantera,
2021
, “
Cantera Developers
,” accessed June 20, 2021, https://cantera.org
29.
OpenFOAM
,
2019
, “
OpenCFD Release OpenFOAM[Textregistered]
,” ESI-OpenCFD, v1912, accessed Jun 20, 2021, https://www.openfoam.com/news/main-news/openfoam-v1912
30.
Pierce
,
C.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.10.1017/S0022112004008213
31.
Ihme
,
M.
, and
See
,
Y. C.
,
2010
, “
Prediction of Autoignition in a Lifted Methane/Air Flame Using an Unsteady Flamelet/Progress Variable Model
,”
Combust. Flame
,
157
(
10
), pp.
1850
1862
.10.1016/j.combustflame.2010.07.015
32.
Maas
,
U.
, and
Pope
,
S. B.
,
1992
, “
Implementation of Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds
,”
International Symposium on Combustion
,
Combustion Institute
, University of Sydney, July 5–10, Vol.
24
, pp.
103
112
.
33.
Fiorina
,
B.
,
Gicquel
,
O.
,
Vervisch
,
L.
,
Carpentier
,
S.
, and
Darabiha
,
N.
,
2005
, “
Approximating the Chemical Structure of Partially Premixed and Diffusion Counterflow Flames Using FPI Flamelet Tabulation
,”
Combust. Flame
,
140
(
3
), pp.
147
160
.10.1016/j.combustflame.2004.11.002
34.
Harvazinski
,
M. E.
,
Huang
,
C.
,
Sankaran
,
V.
,
Feldman
,
T. W.
,
Anderson
,
W. E.
,
Merkle
,
C. L.
, and
Talley
,
D. G.
,
2015
, “
Coupling Between Hydrodynamics, Acoustics, and Heat Release in a Self-Excited Unstable Combustor
,”
Phys. Fluids
,
27
, p.
045102
.10.1063/1.4916673
35.
Yoshizawa
,
A.
,
1986
, “
Statistical Theory for Compressible Turbulent Shear Flows, With the Application to Subgrid Modeling
,”
Phys. Fluids
,
29
(
7
), pp.
2152
2164
.10.1063/1.865552
36.
CERFACS,
2017
, “
CANTERA User's Guide: Propane/Air Combustion
,” CERFACS, accessed June 20, 2021, https://www.cerfacs.fr/cantera/mechanisms/prop.php
37.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
38.
Golubev
,
V. V.
, and
Atassi
,
H. M.
,
1998
, “
Acoustic-Vorticity Waves in Swirling Flows
,”
J. Sound Vib.
,
209
(
2
), pp.
203
222
.10.1006/jsvi.1997.1049
39.
Arndt
,
C.
,
Severin
,
M.
,
Dem
,
C.
,
Stöhr
,
M.
,
Steinberg
,
A.
, and
Meier
,
W.
,
2015
, “
Experimental Analysis of Thermo-Acoustic Instabilities in a Generic Gas Turbine Combustor by Phase-Correlated PIV, Chemiluminescence, and Laser Raman Scattering Measurements
,”
Exp. Fluids
,
56
(
4
), p.
69
.10.1007/s00348-015-1929-3
40.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
41.
Kraus
,
C.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2018
, “
Coupling Heat Transfer and Large Eddy Simulation for Combustion Instability Prediction in a Swirl Burner
,”
Combust. Flame
,
191
, pp.
239
251
.10.1016/j.combustflame.2018.01.007
42.
Davy
,
R.
,
Mortain
,
F.
,
Huet
,
M.
, and
Garrec
,
T.
,
2019
, “
Installed Jet Noise Source Analysis by Microphone Array Processing
,”
AIAA
Paper No. 20192654.10.2514/6.20192654
43.
Nekkanti
,
A.
, and
Schmidt
,
O.
,
2021
, “
Modal Analysis of Acoustic Directivity in Turbulent Jets
,”
AIAA J.
,
59
(
1
), pp.
228
239
.10.2514/1.J059425
44.
Wei
,
X.
,
Chua
,
L.
,
Lu
,
Z.
,
Lim
,
H.
,
Mariani
,
R.
,
Cui
,
Y.
, and
New
,
T.
,
2020
, “
Near- and Far-Field Acoustic Measurements for Stepped Nozzles at Over- and Perfectly-Expanded Supersonic Jet Flow Conditions
,”
ASME J. Fluids Eng.
,
142
, p.
111205
.10.1115/1.4047802
You do not currently have access to this content.