Abstract

An investigation of flow acceleration from initial statistically steady turbulent flow to final statistically steady turbulent flow is conducted experimentally using particle image velocimetry (PIV) and constant temperature anemometry (CTA). The turbulence response is investigated as the acceleration periods and acceleration rates are varied in a controlled fashion. This work expands the research by Mathur et al. (2018, “Temporal Acceleration of a Turbulent Channel Flow,” J. Fluid Mech., 835, pp. 471–490.) studying slower and longer transient flows. It also complements the numerical studies of a step increase in the flowrate of (He and Seddighi, 2013, “Turbulence in Transient Channel Flow,” J. Fluid Mech., 715, pp. 60–102. and He and Seddighi, 2015, “Transition of Transient Channel Flow After a Change in Reynolds Number,” J. Fluid Mech., 764, pp. 395–427.). The results obtained from the current investigations are qualitatively similar to those obtained previously. Consistent with previous studies, the response of turbulence in the current slow transient flow is again characterized by a laminar-turbulent transition. The initial increase of the flow development among the cases investigated can be categorized as faster, medium, and slower responses. Modifications are made to the equivalent Reynolds number and the initial turbulence intensity proposed earlier in order to account for the slow accelerating flow rates and the continuous change of the bulk velocities of the cases investigated. It has been shown that the critical equivalent Reynolds number based on these modifications and the initial turbulence intensity are well correlated for all cases investigated and a power-law relation is established.

References

1.
He
,
S.
, and
Jackson
,
J. D.
,
2009
, “
An Experimental Study of Pulsating Turbulent Flow in a Pipe
,”
Eur. J. Mech. B/Fluids
,
28
(
2
), pp.
309
320
. 10.1016/j.euromechflu.2008.05.004
2.
Ramaprian
,
B. R.
, and
Tu
,
S. W.
,
1983
, “
Fully Developed Periodic Turbulent Pipe Flow—Part 2: The Detailed Structure of the Flow
,”
J. Fluid Mech.
,
137
, pp.
59
81
. 10.1017/S0022112083002293
3.
Scotti
,
A.
, and
Piomelli
,
U.
,
2001
, “
Numerical Simulation of Pulsating Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
5
), pp.
1367
1384
. https://doi.org/10.1063/1.1359766
4.
Tardu
,
S.
,
2007
, “
Spectral Characteristics of the Near-Wall Turbulence in an Unsteady Channel Flow
,”
ASME J. Appl. Mech.
,
74
(
1
), pp.
172
175
. https://doi.org/10.1115/1.2166650
5.
Tardu
,
F. S.
, and
Binder
,
G.
,
1993
, “
Wall Shear Stress Modulation in Unsteady Turbulent Channel Flow With High Imposed Frequencies
,”
Phys. Fluids A
,
5
(
8
), pp.
2028
2037
. https://doi.org/10.1063/1.858538
6.
Tardu
,
S. F.
,
Binder
,
G.
, and
Blackwelder
,
R. F.
,
1994
, “
Turbulent Channel Flow With Large-Amplitude Velocity Oscillations
,”
J. Fluid Mech.
,
267
, pp.
109
151
. https://doi.org/10.1017/S0022112094001138
7.
Tardu
,
F. S.
, and
Vezin
,
P.
,
2004
, “
Response of the Streaks, the Active and Passive Eddies in an Unsteady Channel Flow
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
915
932
. https://doi.org/10.1016/j.ijheatfluidflow.2004.02.026
8.
Tu
,
S. W.
, and
Ramaprian
,
B. R.
,
1983
, “
Fully Developed Periodic Turbulent Pipe Flow—Part 1: Main Experimental Results and Comparison With Predictions
,”
J. Fluid Mech.
,
137
, pp.
31
58
. https://doi.org/10.1017/S0022112083002281
9.
Maruyama
,
T.
,
Kuribayashi
,
T.
, and
Mizushina
,
T.
,
1976
, “
The Structure of the Turbulence in Transient Pipe Flows
,”
J. Chem. Eng. Jpn.
,
9
(
6
), pp.
431
439
. https://doi.org/10.1252/jcej.9.431
10.
He
,
S.
, and
Jackson
,
J. D.
,
2000
, “
A Study of Turbulence Under Conditions of Transient Flow in a Pipe
,”
J. Fluid Mech.
,
408
, pp.
1
38
. https://doi.org/10.1017/S0022112099007016
11.
Greenblatt
,
D.
, and
Moss
,
E. A.
,
2004
, “
Rapid Temporal Acceleration of a Turbulent Pipe Flow
,”
J. Fluid Mech.
,
514
, pp.
65
75
. https://doi.org/10.1017/S0022112004000114
12.
He
,
S.
, and
Seddighi
,
M.
,
2013
, “
Turbulence in Transient Channel Flow
,”
J. Fluid Mech.
,
715
, pp.
60
102
. https://doi.org/10.1017/jfm.2012.498
13.
He
,
S.
, and
Seddighi
,
M.
,
2015
, “
Transition of Transient Channel Flow After a Change in Reynolds Number
,”
J. Fluid Mech.
,
764
, pp.
395
427
. https://doi.org/10.1017/jfm.2014.698
14.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
. https://doi.org/10.1017/S0022112000002469
15.
Sundstrom
,
L. R. J.
, and
Cervantes
,
M. J.
,
2018
, “
Laminar Similarities Between Accelerating and Decelerating Turbulent Flows
,”
Int. J. Heat Fluid Flow
,
71
, pp.
13
26
. https://doi.org/10.1016/j.ijheatfluidflow.2018.03.005
16.
Sundstrom
,
L. R. J.
, and
Cervantes
,
M. J.
,
2018
, “
On the Similarity of Pulsating and Accelerating Turbulent Pipe Flows
,”
Flow, Turbul. Combust.
,
100
(
2
), pp.
417
436
. https://doi.org/10.1007/s10494-017-9855-5
17.
Jung
,
S. Y.
, and
Kim
,
K.
,
2017
, “
Transient Behaviors of Wall Turbulence in Temporally Accelerating Channel Flows
,”
Int. J. Heat Fluid Flow
,
67
, pp.
13
26
. https://doi.org/10.1016/j.ijheatfluidflow.2017.06.012
18.
Mathur
,
A.
,
Gorji
,
S.
,
He
,
S.
,
Seddighi
,
M.
,
Vardy
,
A. E.
,
O'Donoghue
,
T.
, and
Pokrajac
,
D.
,
2018
, “
Temporal Acceleration of a Turbulent Channel Flow
,”
J. Fluid Mech.
,
835
, pp.
471
490
. https://doi.org/10.1017/jfm.2017.753
19.
Oluwadare
,
B. S.
, and
He
,
S.
,
2018
, “
Effect of Varying Reynolds Number Ratio on Transition to Turbulence in Unsteady Flows
,”
AIAA
Paper No. 2018–3228.10.2514/6.2018-3228
20.
Seddighi
,
M.
,
He
,
S.
,
Vardy
,
A. E.
, and
Orlandi
,
P.
,
2014
, “
Direct Numerical Simulation of an Accelerating Channel Flow
,”
Flow, Turbul. Combust.
,
92
(
1
), pp.
473
502
. https://doi.org/10.1007/s10494-013-9519-z
21.
Pargal
,
S.
,
Yuan
,
J.
, and
Brereton
,
G.
,
2021
, “
Impulse Response of Turbulent Flow in Smooth and Riblet-Walled Channels to a Sudden Velocity Increase
,”
J. Turbul.
,
22
(
6
), pp.
353
379
. https://doi.org/10.1080/14685248.2021.1885676
22.
García
,
F. J. G.
, and
Alvariño
,
P. F.
,
2019
, “
On an Analytical Explanation of the Phenomena Observed in Accelerated Turbulent Pipe Flow
,”
J. Fluid Mech.
,
881
, pp.
420
461
. https://doi.org/10.1017/jfm.2019.733
23.
Guerrero
,
B.
,
Lambert
,
M. F.
, and
Chin
,
R. C.
,
2021
, “
Transient Dynamics of Accelerating Turbulent Pipe Flow
,”
J. Fluid Mech.
,
917
, pp.
1
27
. https://doi.org/10.1017/jfm.2021.303
24.
Ariyaratne
,
C.
,
He
,
S.
, and
Vardy
,
A. E.
,
2010
, “
Wall Friction and Turbulence Dynamics in Decelerating Pipe Flows
,”
J. Hydraul. Res.
,
48
(
6
), pp.
810
821
. https://doi.org/10.1080/00221686.2010.525372
25.
He
,
S.
, and
Ariyaratne
,
C.
,
2011
, “
Erratum for ‘Wall Shear Stress in the Early Stage of Unsteady Turbulent Pipe Flow’ by S. He and C. Ariyaratne
,”
J. Hydraul. Eng.
,
137
(
10
), p.
1309
. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000448
26.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2008
, “
A Computational Study of Wall Friction and Turbulence Dynamics in Accelerating Pipe Flows
,”
Comput. Fluids
,
37
(
6
), pp.
674
689
. https://doi.org/10.1016/j.compfluid.2007.09.001
27.
Scarselli
,
D.
,
Kühnen
,
J.
, and
Hof
,
B.
,
2019
, “
Relaminarising Pipe Flow by Wall Movement
,”
J. Fluid Mech.
,
867
, pp.
934
948
. https://doi.org/10.1017/jfm.2019.191.
28.
Oluwadare
,
B. S.
,
2019
, “
Experimental Study of Turbulence in Transient Channel Flows
,”
Ph.D. thesis
,
University of Sheffield
,
Sheffield, UK
.https://etheses.whiterose.ac.uk/9135/
29.
Gorji
,
S.
,
2015
, “
A Study of Turbulence in Transient Channel Flows
,” Ph.D. thesis,
University of Sheffield
,
Sheffield, UK
. https://doi.org/http://hdl.handle.net/2429/36643
30.
He
,
S.
,
Ariyaratne
,
C.
, and
Vardy
,
A. E.
,
2011
, “
Wall Shear Stress in Accelerating Turbulent Pipe Flow
,”
J. Fluid Mech.
,
685
, pp.
440
460
. https://doi.org/10.1017/jfm.2011.328
31.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
,
2001
, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
382
393
. https://doi.org/10.1115/1.1366680
32.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow up to Re τ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
. https://doi.org/10.1063/1.869966
33.
Lee
,
M.
, and
Moser
,
R. D.
,
2015
, “
Direct Numerical Simulation of Turbulent Channel Flow up to Re τ = 590
,”
J. Fluid Mech.
,
774
, pp.
395
415
. https://doi.org/10.1017/jfm.2015.268
34.
Jimenez
,
J.
,
Martinez-Val
,
R.
, and
Rebollo
,
M.
,
1981
, “
Hot-Film Sensors Calibration Drift in Water
,”
J. Phys. E: Sci. Instrum.
,
14
(
5
), pp.
569
572
. https://doi.org/10.1088/0022-3735/14/5/010
35.
Nagarajan
,
S.
,
Lele
,
S. K.
, and
Ferziger
,
J. H.
,
2007
, “
Leading-Edge Effects in Bypass Transition
,”
J. Fluid Mech.
,
572
, pp.
471
504
. https://doi.org/10.1017/S0022112006001893
36.
Sundstrom
,
L. R. J.
, and
Cervantes
,
M. J.
,
2017
, “
The Response of the Wall Shear Stress in Uniformly and Nonuniformly Accelerating Pipe Flows
,”
Proceedings of the 10th International Symposium on Turbulence and Shear Flow Phenomena
(
TSFP10
),
Chicago, IL
, July 7–9, pp.
1
6
.http://www.tsfpconference.org/proceedings/2017/2/284.pdf
37.
Mathur
,
A.
,
2016
, “
Study of Accelerating and Decelerating Turbulent Flows in a Channel
,” Ph.D. thesis,
University of Sheffield
,
Sheffield, UK
.
You do not currently have access to this content.