Abstract

In this work, periodic vortex shedding at both sides of a circular cylinder is aimed to be suppressed using a concentrically located perforated cylinder under laminar flow conditions at Re = 200. A code is developed in comsolmultiphysics, 5.3a, and validated using the outcomes of ansysfluent, and previous studies in the open literature, which exhibit a good agreement. In this study, the porosity, β is varied within 0.5 ≤ β ≤ 0.9, and the gap ratio, D/d is varied within 1.5 ≤ D/d ≤ 3.5. The results of the present numerical investigation are evaluated using instantaneous and time-averaged vorticity, streamwise, and transverse components of the velocity and pressure. The drag, CD and lift, CL coefficients are calculated. The Strouhal number, St from the pointwise spectral analysis of the streamwise velocity component is plotted for various cases. It is observed that porosity, β has a dominant effect rather than the gap ratio, D/d on the flow past a solid cylinder. The low-velocity and low-pressure regions are getting large in the transverse direction as the porosity, β increases. The separated layers from solid and perforated cylinders merge for low gap ratios, D/d. However, individual movement of these layers is evident for larger gap ratios, D/d with low porosity, β values. A perfect suppression of the periodicity of vortex shedding is obtained for the cases of D/d = 3.5 with β = 0.5, 0.6, and D/d = 3 with β = 0.5.

References

1.
Williamson
,
C. H. K.
,
2003
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
, pp.
477
539
.10.1146/annurev.fl.28.010196.002401
2.
Canpolat
,
C.
, and
Sahin
,
B.
,
2017
, “
Influence of Single Rectangular Groove on the Flow Past a Circular Cylinder
,”
Int. J. Heat Fluid Flow
,
64
, pp.
79
88
.10.1016/j.ijheatfluidflow.2017.02.001
3.
Roshko
,
A.
,
1993
, “
Perspectives on Bluff Body Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
49
(
1–3
), pp.
79
100
.10.1016/0167-6105(93)90007-B
4.
Gad-el-Hak
,
M.
, and
Bushnell
,
D. M.
,
1991
, “
Separation Control: Review
,”
ASME J. Fluids Eng.
,
113
(
1
), pp.
5
30
.10.1115/1.2926497
5.
Choi
,
H.
,
Jeon
,
W. P.
, and
Kim
,
J.
,
2008
, “
Control of Flow Over a Bluff Body
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
113
139
.10.1146/annurev.fluid.39.050905.110149
6.
Rashidi
,
S.
,
Hayatdavoodi
,
M.
, and
Esfahani
,
J. A.
,
2016
, “
Vortex Shedding Suppression and Wake Control: A Review
,”
Ocean Eng.
,
126
, pp.
57
80
.10.1016/j.oceaneng.2016.08.031
7.
Chong
,
T. P.
,
Joseph
,
P. F.
, and
Davies
,
P. O. A. L.
,
2008
, “
A Parametric Study of Passive Flow Control for a Short, High Area Ratio 90 Deg Curved Diffuser
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111104
.10.1115/1.2969447
8.
Malavasi
,
S.
,
Messa
,
G.
,
Fratino
,
U.
, and
Pagano
,
A.
,
2012
, “
On the Pressure Losses Through Perforated Plates
,”
Flow Meas. Instrum.
,
28
, pp.
57
66
.10.1016/j.flowmeasinst.2012.07.006
9.
Çarpinlioňlu
,
M. Ö.
, and
Özahi
,
E.
,
2011
, “
Laminar Flow Control Via Utilization of Pipe Entrance Inserts (a Comment on Entrance Length Concept)
,”
Flow Meas. Instrum.
,
22
(
3
), pp.
165
174
.10.1016/j.flowmeasinst.2011.01.005
10.
Sahin
,
B.
, and
Ward-Smith
,
A. J.
,
1987
, “
The Use of Perforated Plates to Control the Flow Emerging From a Wide-Angle Diffuser, With Application to Electrostatic Precipitator Design
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
124
131
.10.1016/0142-727X(87)90011-7
11.
Şahin
,
B.
,
1989
, “
Pressure Losses in an Isolated Perforated Plate and Jets Emerging From the Perforated Plate
,”
Int. J. Mech. Sci.
,
31
(
1
), pp.
51
61
.10.1016/0020-7403(89)90118-5
12.
Chandrasekaran
,
S.
, and
Madhavi
,
N.
,
2015
, “
Retrofitting of Offshore Cylindrical Structures With Different Geometrical Configuration of Perforated Outer Cover
,”
Int. Shipbuild. Prog.
,
62
(
1–2
), pp.
43
56
.10.3233/ISP-150116
13.
Galbraith
,
R. A. M. D.
,
1980
, “
Flow Pattern Around a Shrouded Cylinder at Re = 5 × 103
,”
J. Wind Eng. Ind. Aerodyn.
,
6
(
3–4
), pp.
227
242
.10.1016/0167-6105(80)90003-3
14.
Cicolin
,
M. M.
, and
Assi
,
G. R. S.
,
2017
, “
Experiments With Flexible Shrouds to Reduce the Vortex-Induced Vibration of a Cylinder With Low Mass and Damping
,”
Appl. Ocean Res.
,
65
, pp.
290
301
.10.1016/j.apor.2017.04.003
15.
Huera-Huarte
,
F. J.
,
2017
, “
Suppression of Vortex-Induced Vibration in Low Mass-Damping Circular Cylinders Using Wire Meshes
,”
Mar. Struct.
,
55
, pp.
200
213
.10.1016/j.marstruc.2017.05.008
16.
Durhasan
,
T.
,
Pinar
,
E.
,
Ozkan
,
G. M.
,
Aksoy
,
M. M.
,
Akilli
,
H.
, and
Sahin
,
B.
,
2018
, “
PIV Measurement Downstream of Perforated Cylinder in Deep Water
,”
Eur. J. Mech. B/Fluids
,
72
, pp.
225
234
.10.1016/j.euromechflu.2018.06.001
17.
Kumar
,
A.
,
Chamoli
,
S.
,
Kumar
,
M.
, and
Singh
,
S.
,
2016
, “
Experimental Investigation on Thermal Performance and Fluid Flow Characteristics in Circular Cylindrical Tube With Circular Perforated Ring Inserts
,”
Exp. Therm. Fluid Sci.
,
79
, pp.
168
174
.10.1016/j.expthermflusci.2016.07.002
18.
Suh
,
K. D.
,
Park
,
J. K.
, and
Park
,
W. S.
,
2006
, “
Wave Reflection From Partially Perforated-Wall Caisson Breakwater
,”
Ocean Eng.
,
33
(
2
), pp.
264
280
.10.1016/j.oceaneng.2004.11.015
19.
Liu
,
Y.
,
Li
,
Y.
,
Teng
,
B.
,
Jiang
,
J.
, and
Ma
,
B.
,
2008
, “
Total Horizontal and Vertical Forces of Irregular Waves on Partially Perforated Caisson Breakwaters
,”
Coastal Eng.
,
55
(
6
), pp.
537
552
.10.1016/j.coastaleng.2008.02.005
20.
Ramli
,
N. A.
,
Azmi
,
A. M.
,
Hamid
,
A. H. A.
,
Baharin
,
Z. A. K.
, and
Zhou
,
T.
,
2021
, “
Effect of Cylinder Gap Ratio on the Wake of a Circular Cylinder Enclosed by Various Perforated Shrouds
,”
CFD Lett.
,
13
(
4
), pp.
51
68
.10.37934/cfdl.13.4.5168
21.
Sumer
,
B. M.
, and
Fredsøe
,
J.
,
2006
, Hydrodynamics Around Cylindrical Structures, Vol.
26
,
World Scientific
, Singapore, pp.
1
530
.
22.
Zdravkovich
,
M. M.
,
1997
,
Flow Around Circular Cylinders
, Volume 1: Fundamentals,
Oxford University Press, New York
.
23.
Chandrasekaran
,
S.
, and
Madhavi
,
N.
,
2015
, “
Flow Field Around Outer Perforated Circular Cylinder Under Regular Waves: Numerical Study
,”
Mar. Syst. Ocean Technol.
,
10
(
2
), pp.
91
100
.10.1007/s40868-015-0008-1
24.
Baranov
,
P. A.
,
Zhdanov
,
V. L.
,
Isaev
,
S. A.
,
Kharchenko
,
V. B.
, and
Usachov
,
A. E.
,
2003
, “Numerical Simulation of the Unsteady Laminar Flow Past a Circular Cylinder with a Perforated Sheath,”
38
(
2
), pp.
203
213
, Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2003, pp. 44–55.
25.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
26.
Wieghardt
,
K. E. G.
,
1953
, “
On the Resistance of Screens
,”
Aeronaut. Q.
,
4
(
2
), pp.
186
192
.10.1017/S0001925900000871
27.
Sharma
,
B.
, and
Barman
,
R. N.
,
2020
, “
Steady Laminar Flow Past a Slotted Circular Cylinder
,”
Phys. Fluids
,
32
(
7
), p.
073605
.10.1063/5.0007958
28.
Tritton
,
D. J.
,
1959
, “
Experiments on the Flow Past a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
6
(
4
), pp.
547
567
.10.1017/S0022112059000829
29.
Henderson
,
R. D.
,
1998
, “
Details of the Drag Curve Near the Onset of Vortex Shedding
,”
Phys. Fluids
,
7
(
9
), p.
2102
.
30.
Persillon
,
H.
, and
Braza
,
M.
,
1998
, “
Physical Analysis of the Transition to Turbulence in the Wake of a Circular Cylinder by Three-Dimensional Navier–Stokes Simulation
,”
J. Fluid Mech.
,
365
, pp.
23
88
.10.1017/S0022112098001116
31.
Posdziech
,
O.
, and
Grundmann
,
R.
,
2007
, “
A Systematic Approach to the Numerical Calculation of Fundamental Quantities of the Two-Dimensional Flow Over a Circular Cylinder
,”
J. Fluids Struct.
,
23
(
3
), pp.
479
499
.10.1016/j.jfluidstructs.2006.09.004
32.
Zhang
,
P. F.
,
Wang
,
J. J.
, and
Huang
,
L. X.
,
2006
, “
Numerical Simulation of Flow Around Cylinder With an Upstream Rod in Tandem at Low Reynolds Numbers
,”
Appl. Ocean Res.
, 28(3), pp.
183
192
.10.1016/j.apor.2006.08.003
33.
Ding
,
H.
,
Shu
,
C.
,
Yeo
,
K. S.
, and
Xu
,
D.
,
2007
, “
Numerical Simulation of Flows Around Two Circular Cylinders by Mesh-Free Least Square-Based Finite Difference Methods
,”
Int. J. Numer. Methods Fluids
,
53
(
2
), pp.
305
332
.10.1002/fld.1281
You do not currently have access to this content.