Abstract

Two-dimensional instead of three-dimensional computational fluid dynamic solutions of flow problems are quite often used in industry to facilitate short design turn-around times with varying degrees of success. A simple and robust approach for improving the accuracy of two-dimensional computational fluid dynamics solutions for problems involving internal flow passages in industrial applications is presented. The technique utilizes an approximation to the shearing stresses that act in the fully three-dimensional case but are ignored in the traditional two-dimensional approximation. Although the technique does not fully account for all the three-dimensional effects in such flows, it gives a reasonable estimate of the operation of devices with internal flows, even those involving transients. The usefulness and accuracy of the method are demonstrated through the application of the method to predict the performance of a supersonic fluidic oscillator for industrial design purposes. This brief provides industrial designers with a simple and robust tool for improving the accuracy of their computational fluid dynamic simulations.

References

1.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2014
, “
2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model
,”
Energy Procedia
,
45
, pp.
131
140
.10.1016/j.egypro.2014.01.015
2.
Bravo
,
R.
,
Tullis
,
S.
, and
Ziada
,
S.
,
2007
, “
Performance Testing of a Small Vertical-Axis Wind Turbine
,”
Proceedings of the 21st Canadian Congress of Applied Mechanics
, Toronto, ON, Canada, June
3
7
.https://www.researchgate.net/publication/265987114_Performance_Testing_of_a_Small_Vertical-Axis_Wind_Turbine
3.
Takao
,
M.
,
Kuma
,
H.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Oki
,
M.
, and
Minoda
,
A.
,
2009
, “
A Straight-Bladed Vertical Axis Wind Turbine With a Directed Guide Vane Row—Effect of Guide Vane Geometry on the Performance
,”
J. Therm. Sci.
,
18
(
1
), pp.
54
57
.10.1007/s11630-009-0054-0
4.
Marvin
,
J. G.
,
Brown
,
J. L.
, and
Gnoffo
,
P. A.
,
2013
, “
Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions
,” National Aeronautics and Space Administration, Hanover, MD, Report No. NASA/TM-2013-216604.
5.
Franchina
,
N.
,
Kouaissah
,
O.
,
Persico
,
G.
, and
Savini
,
M.
,
2019
, “
Three-Dimensional CFD Simulation and Experimental Assessment of the Performance of a H-Shape Vertical-Axis Wind Turbine at Design and Off-Design Conditions
,”
Int. J. Turbomach. Propuls. Power
,
4
(
3
), p.
30
.10.3390/ijtpp4030030
6.
He
,
J.
,
Jin
,
X.
,
Xie
,
S.
,
Cao
,
L.
,
Wang
,
Y.
,
Lin
,
Y.
, and
Wang
,
N.
,
2020
, “
CFD Modeling of Varying Complexity for Aerodynamic Analysis of H-Vertical Axis Wind Turbines
,”
Renew. Energy
,
145
, pp.
2658
2670
.10.1016/j.renene.2019.07.132
7.
Selvam
,
R. P.
,
Bosch
,
H.
, and
Joshi
,
R.
,
2014
, “
Comparison of 2D and 3D CFD Modeling of Bridge Aerodynamics
,”
Fifth International Symposium on Computational Wind Engineering
, Chapel Hill, NC, May 23–27, pp.
1301
1309
.
8.
Li
,
X. X.
,
Liu
,
C. H.
,
Leung
,
D. Y. C.
, and
Lam
,
K. M.
,
2006
, “
Recent Progress in CFD Modelling of Wind Field and Pollutant Transport in Street Canyons
,”
Atmos. Environ.
,
40
(
29
), pp.
5640
5658
.10.1016/j.atmosenv.2006.04.055
9.
Strasser
,
W.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Pulsation and Retraction on Non-Newtonian Flows in Three-Stream Injector Atomization Systems
,”
Chem. Eng. J.
,
309
, pp.
532
544
.10.1016/j.cej.2016.10.046
10.
Chen
,
H.
,
Sun
,
Z.
,
Song
,
X.
, and
Yu
,
J.
,
2016
, “
A Pseudo-3D Model With 3D Accuracy and 2D Cost for the CFD–PBM Simulation of a Pilot-Scale Rotating Disc Contactor
,”
Chem. Eng. Sci.
,
139
, pp.
27
40
.10.1016/j.ces.2015.09.023
11.
Avramenko
,
A.
,
Agafonova
,
O.
,
Sorvari
,
J.
,
Haario
,
H.
, and
Avramenko
,
Y.
,
2017
, “
Fast Numerical Modelling Method for Wind Flow Investigation Based on Depth-Averaged Equations
,”
WIT Trans. Eng. Sci.
,
118
, pp.
21
29
.10.2495/CMEM170031
12.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2006
, “
Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1036
1044
.10.1115/1.2234786
13.
Washington
,
L.
,
1937
, “
Heat Transfer and Pressure Drop in Rectangular Air Passage
,”
Ind. Eng. Chem.
,
29
(
3
), pp.
337
345
.10.1021/ie50327a017
14.
Cornish
,
R. J.
, and
Milne
,
E. A.
,
1928
, “
Flow in a Pipe of Rectangular Cross-Section
,”
Proc. R. Soc. London Ser. Contain. Pap. Math. Phys. Charact.
,
120
(
786
), pp.
691
700
.10.1098/rspa.1928.0175
15.
Hoagland
,
L. C.
,
1960
, “
Fully Developed Turbulent Flow in Straight Rectangular Ducts: Secondary Flow, Its Cause and Effect on the Primary Flow
,” Ph.D. dissertation,
Massachusetts Institute of Technology
, Cambridge, MA.
16.
Srinivasan
,
R.
,
1977
, “
A Study of Fully Developed Turbulent Flow between Parallel Plates by a Statistical Method
,” Ph.D.,
Georgia Institute of Technology
, Atlanta, GA.
17.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
18.
Churchill
,
S. W.
,
1977
, “
Friction Factor Equation Spans All Fluid Flow Regimes
,”
Chem. Eng.
,
84
, pp.
91
92
.
19.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.10.1115/1.3240948
20.
Jones
,
O. C.
, Jr.
,
1976
, “
An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
173
180
.10.1115/1.3448250
21.
Churchill
,
S. W.
, and
Chan
,
C.
,
1994
, “
Improved Correlating Equations for the Friction Factor for Fully Turbulent Flow in Round Tubes and Between Identical Parallel Plates, Both Smooth and Naturally Rough
,”
Ind. Eng. Chem. Res.
,
33
(
8
), pp.
2016
2019
.10.1021/ie00032a018
22.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2017
,
Fluid Mechanics: Fundamentals and Applications
, McGraw-Hill, New York.
23.
Hiroki
,
F.
,
Yamamoto
,
K.
, and
Nasuda
,
T.
,
1993
, “
Fluidic Oscillator Using a Supersonic Bistable Device and Its Oscillation Frequency
,”
J. Fluid Control
,
21
(
4
), pp.
28
47
.10.9746/sicetr1965.26.70
24.
Xu
,
S.
,
2018
, “
Experimental Investigation of a Bi-Stable Supersonic Fluidic Oscillator
,” MSc,
University of Windsor
,
Canada
.
25.
Strasser
,
W.
,
2022
, “
The Nature of ‘Searching’ Vortices in Fluidic Logic Driven by a Switching Jet
,”
ASME J. Fluids Eng.
, 144(8), p.
081303
.10.1115/1.4053786
26.
Ablyaz
,
T. R.
,
2016
, “
Roughness of the Machined Surface in Wire EDM
,”
Russ. Eng. Res.
,
36
(
8
), pp.
690
691
.10.3103/S1068798X16080037
27.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.