Abstract

The theme of current effort is to numerically analyze physical aspects of the flow triggered by a lid-driven cavity of butterfly cross section. The main goal is to search how the butterfly shape adds to the mixing phenomenon and its stationary flow solution. To achieve the aim, numerical simulations are performed from the scaled equations employing a conventional finite element technique. The induced pressure and velocity field topologies are elucidated through visualizing the contour plots and stream flows for varying Reynolds numbers. The present results reveal that the amount of flow and its mixing process can be controlled by adjusting the nonparallel walls of the butterfly in such a manner that fast mixing and slow mixing can take place in different sections of the cavity. This permits us decomposition of particles during separation process of chemical substances in industrial applications.

References

1.
Kuhlmann
,
H. C.
, and
Romanò
,
F.
,
2019
, “
The Lid-Driven Cavity
,”
Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics. Computational Methods in Applied Sciences
, A. Gelfgat, ed., Vol. 50, Springer, Cham, Switzerland, pp. 233–309.10.1007/978-3-319-91494-7_8
2.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.10.1016/0021-9991(82)90058-4
3.
Botella
,
O.
, and
Peyret
,
R.
,
1998
, “
Benchmark Spectral Results on the Lid-Driven Cavity Flow
,”
Comput. Fluids
,
27
(
4
), pp.
421
433
.10.1016/S0045-7930(98)00002-4
4.
Bhattacharya
,
M.
,
Basak
,
T.
,
Oztop
,
H. F.
, and
Varol
,
Y.
,
2013
, “
Mixed Convection and Role of Multiple Solutions in Lid-Driven Trapezoidal Enclosures
,”
Int. J. Heat Mass Transfer
,
63
, pp.
366
388
.10.1016/j.ijheatmasstransfer.2013.03.028
5.
Gurcan
,
F.
, and
Bilgil
,
H.
,
2013
, “
Bifurcations and Eddy Genesis of Stokes Flow Within a Sectorial Cavity
,”
Eur. J. Mech./B Fluids
,
39
, pp.
42
51
.10.1016/j.euromechflu.2012.11.002
6.
Perumal
,
D. A.
, and
Dass
,
A. K.
,
2013
, “
Application of Lattice Boltzmann Method for Incompressible Viscous Flows
,”
Appl. Math. Modell.
,
37
(
6
), pp.
4075
4092
.10.1016/j.apm.2012.09.028
7.
Erturk
,
E.
, and
Gokcol
,
O.
,
2007
, “
Fine Grid Numerical Solutions of Triangular Cavity Flow
,”
Eur. Phys. J. Appl. Phys.
,
38
(
1
), pp.
97
105
.10.1051/epjap:2007057
8.
Gonzalez
,
L. M.
,
Ferrer
,
E.
, and
Diaz-Ojeda
,
H. R.
,
2017
, “
Onset of Three-Dimensional Flow Instabilities in Lid-Driven Circular Cavities
,”
Phys. Fluids
,
29
(
6
), p.
064102
.10.1063/1.4984242
9.
Bhopalam
,
S.
,
Perumal
,
R. D. A.
, and
Yadav
,
A. K.
,
2018
, “
Computation of Fluid Flow in Double Sided Cross-Shaped Lid-Driven Cavities Using Lattice Boltzmann Method
,”
Eur. J. Mech./B Fluids
,
70
, pp.
46
72
.10.1016/j.euromechflu.2018.01.006
10.
Deliceoglu
,
A.
, and
Celik
,
E.
,
2019
, “
A Mechanism of Eddy Generation in a Single Lid-Driven t-Shaped Cavity
,”
Cumhuriyet Sci. J.
,
40
, pp.
583
594
.10.17776/csj.569655
11.
Saranyamol
,
V. S.
,
Kumar
,
P.
, and
Das
,
S.
,
2018
, “
Influence of Impinging Wall Ramping Modification on the Flow Field of Open Cavity at m = 2
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071103
.10.1115/1.4039247
12.
Shaaban
,
A. A.
, and
Ziada
,
S.
,
2019
, “
Effect of the Separation Distance on the Aeroacoustic Source of Multiple Shallow Cavities
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
011102
.10.1115/1.4040389
13.
Ogawa
,
N.
,
Goto
,
M.
,
Iio
,
S.
,
Kitahora
,
T.
,
Choi
,
Y.-D.
, and
Inagaki
,
M.
,
2021
, “
Performance Improvement of Cross-Flow Turbine With a Cylindrical Cavity and Guide Wall
,”
ASME J. Fluids Eng.
,
143
(
12
), p.
121104
.10.1115/1.4052046
14.
Wu
,
J.
,
Ma
,
J.
,
Gou
,
X.
,
Liu
,
L.
, and
Wang
,
E.
,
2011
, “
Flow Field Characteristics of Butterfly-Type Cavity and Its Influence on Supersonic Flow
,”
Adv. Mater. Res.
,
347–353
, pp.
2468
2474
.10.4028/www.scientific.net/AMR.347-353.2468
15.
Turkyilmazoglu
,
M.
,
2022
, “
Exponential Nonuniform Wall Heating of a Square Cavity and Natural Convection
,”
Chin. J. Phys.
10.1016/j.cjph.2021.12.021
16.
Turkyilmazoglu
,
M.
,
2022
, “
Driven Flow Motion by a Dually Moving Lid of a Square Cavity
,”
Eur. J. Mech./B Fluids
, 94, pp.
17
28
.
You do not currently have access to this content.