Abstract

This study explores the structure of liquid/gas coaxial jets under forced and unforced conditions. The forcing is in the form of a transverse acoustic resonance within the confined space where the mixing occurs. The studied flows are relevant to combustion instabilities which involve an interaction between acoustic waves and reactant mixing. A variety of local and global signal processing methods were applied to digital flow visualization data to identify spatial and temporal features. The unforced case is in particular chaotic and influenced by a broad range of spatial and temporal phenomena. Proper orthogonal decomposition (POD) was able to extract flapping and convecting features, and spectral content of these behaviors is presented. The forced case results in organized structures that emerge above the background turbulence, including harmonics of the forcing frequency and nonlinear interactions between specific frequencies. The dynamic mode decomposition (DMD) performs the best in the forced case, clearly isolating all of these features. Wavelet analysis showed that forcing tended to reorganize energy from longer to shorter time scales. Bicoherence analysis of the data showed that the forcing causes a much different energy exchange in the outer and inner shear layers. The outer-to-inner jet coupling during forced conditions appears to be limited to an axial extent of about one to three inner jet diameters downstream of the jet exit. The recirculation zone between the inner and outer jet, extending about one inner jet diameter downstream, appears to disrupt the influence of forcing on the inner jet.

References

1.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
.10.1017/S002211207400190X
2.
Crow
,
S. C.
, and
Champagne
,
F. H.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.10.1017/S0022112071001745
3.
Smith
,
C. R.
, and
Metzler
,
S. P.
,
1983
, “
The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
129
(
1
), pp.
27
54
.10.1017/S0022112083000634
4.
Chigier
,
N.
, and
Farago
,
Z.
,
1992
, “
Morphological Classification of Disintegration of Round Liquid Jets in a Coaxial Air Stream
,”
Atomization Sprays
,
2
(
2
), pp.
137
153
.10.1615/AtomizSpr.v2.i2.50
5.
Fuster
,
D.
,
Matas
,
J.-P.
,
Marty
,
S.
,
Popinet
,
S.
,
Hoepffner
,
J.
,
Cartellier
,
A.
, and
Zaleski
,
S.
,
2013
, “
Instability Regimes in the Primary Breakup Region of Planar Coflowing Sheets
,”
J. Fluid Mech.
,
736
, pp.
150
176
.10.1017/jfm.2013.536
6.
Teshome
,
S.
,
Leyva
,
I. A.
, and
Talley
,
D.
,
2012
, “
Cryogenic High-Pressure Shear-Coaxial Jets Exposed to Transverse Acoustic Forcing
,”
AIAA Paper No. 2012-1265
.10.2514/6.2012-1265
7.
Leyva
,
I. A.
,
Chehroudi
,
B.
, and
Talley
,
D.
,
2007
, “
Dark Core Analysis of Coaxial Injectors at Sub-, Near-, and Supercritical Pressures in a Transverse Acoustic Field
,”
AIAA Paper No. 2007-5456
.10.2514/6.2007-5456
8.
Rodriguez
,
J.
,
Leyva
,
I.
, and
Graham
,
J.
,
2009
, “
Mixing Enhancement of Liquid Rocket Engine Injector Flow
,”
AIAA Paper No. 2009-5143
.10.2514/6.2009-5143
9.
Graham
,
J. J.
,
Leyva
,
I. A.
, and
Rodriguez
,
J. I.
,
2009
, “
On the Effect of a Transverse Acoustic Field on a Flush Shear Coaxial Injector
,”
AIAA Paper No. 2009-5142
.10.2514/6.2009-5142
10.
Wegener
,
J. L.
,
Forliti
,
D. J.
, and
Leyva
,
I. A.
,
2014
, “
Receptivity of a Cryogenic Coaxial Gas-Liquid Jet to Acoustic Disturbances
,”
AIAA Paper No. 2014-3487
.10.2514/6.2014-3487
11.
Wegener
,
J. L.
,
2014
, “
Multi-Phase Combustion and Transport Processes Under the Influence of Acoustic Excitation
,”
Ph.D. thesis
,
University of California
,
Los Angeles, CA
.https://escholarship.org/uc/item/5kq1238x
12.
Wegener
,
J.
,
Leyva
,
I.
, and
Forliti
,
D.
,
2014
, “
Development of a Facility for Combustion Stability Experiments at Supercritical Pressure
,”
AIAA Paper No. 2014-0137
.10.2514/6.2014-0137
13.
Forliti
,
D. J.
,
Leyva
,
I. A.
,
Talley
,
D. G.
,
Rodriguez
,
J. I.
,
Teshome
,
S.
,
Wegener
,
J. L.
,
Roa
,
M.
, and
Karagozian
,
A. R.
,
2020
, “
Forced and Unforced Shear Coaxial Mixing and Combustion at Subcritical and Supercritical Pressures
,”
High Pressure Flows Propul. Appl.
,
260
, pp.
233
280
. 10.2514/4.105814
14.
Davis
,
D. W.
,
2006
, “
On the Behavior of a Shear-Coaxial Jet, Spanning Sub- to Supercritical Pressures, With and Without an Externally Imposed Transverse Acoustic Field
,” Ph.D. thesis,
The Pennsylvania State University
,
State College, PA
.
15.
Hilliker
,
C. A.
,
Wagner
,
S. R.
, and
Krizak
,
T. C.
,
2020
, “
Interactions Between a Jet and an Oscillating Transverse Flow
,”
AIAA Paper No. 2020-1423
.10.2514/6.2020-1423
16.
Lasheras
,
J. C.
,
Villermaux
,
E.
, and
Hopfinger
,
E. J.
,
1998
, “
Break-Up and Atomization of a Round Water Jet by a High-Speed Annular Air Jet
,”
J. Fluid Mech.
,
357
, pp.
351
379
.10.1017/S0022112097008070
17.
Arienti
,
M.
, and
Soteriou
,
M. C.
,
2009
, “
Time-Resolved Proper Orthogonal Decomposition of Liquid Jet Dynamics
,”
Phys. Fluids
,
21
(
11
), p.
112104
.10.1063/1.3263165
18.
Schmid
,
P. J.
,
Li
,
L.
,
Juniper
,
M. P.
, and
Pust
,
O.
,
2011
, “
Applications of the Dynamic Mode Decomposition
,”
Theor. Comput. Fluid Dyn.
,
25
(
1–4
), pp.
249
259
.10.1007/s00162-010-0203-9
19.
Dubey
,
K.
,
Gupta
,
A.
, and
Bahga
,
S. S.
,
2017
, “
Coherent Structures in Electrokinetic Instability With Orthogonal Conductivity Gradient and Electric Field
,”
Phys. Fluids
,
29
(
9
), p.
092007
.10.1063/1.5003409
20.
Bjornsson
,
H.
, and
Venegas
,
S. A.
,
1997
, “
A Manual for EOF and SVD Analyses of Climatic Data
,”
CCGCR Rep.
,
97
(
1
), pp.
112
134
.http://www.geog.mcgill.ca/gec3/wp-content/uploads/2009/03/Report-no.-1997-1.pdf
21.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
22.
Rowley
,
C. W.
,
Mezić
,
I. G. O. R.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.10.1017/S0022112009992059
23.
Alenius
,
E.
,
2014
, “
Mode Switching in a Thick Orifice Jet, an LES and Dynamic Mode Decomposition Approach
,”
Comput. Fluids
,
90
, pp.
101
112
.10.1016/j.compfluid.2013.11.022
24.
Morlet
,
J.
,
Arens
,
G.
,
Fourgeau
,
E.
, and
Glard
,
D.
,
1982
, “
Wave Propagation and Sampling Theory—Part I: Complex Signal and Scattering in Multilayered Media
,”
Geophysics
,
47
(
2
), pp.
203
221
.10.1190/1.1441328
25.
Mayer
,
Y.
,
1985
, “
Principe D'incertitude, Bases Hilbertiennes et Algebres D'operatures
,”
Semin. Bourbaki
,
662
, pp.
209
223
.
26.
Grossmann
,
A.
, and
Morlet
,
J.
,
1984
, “
Decomposition of Hardy Functions Into Square Integrable Wavelets of Constant Shape
,”
SIAM J. Math. Anal.
,
15
(
4
), pp.
723
736
.10.1137/0515056
27.
Farge
,
M.
,
1992
, “
Wavelet Transforms and Their Applications to Turbulence
,”
Annu. Rev. Fluid Mech.
,
24
(
1
), pp.
395
458
.10.1146/annurev.fl.24.010192.002143
28.
Thomas
,
F. O.
,
1990
, “
An Experimental Investigation Into the Role of Simultaneous Amplitude and Phase Modulation in the Transition of a Planar Jet
,”
Phys. Fluids A
,
2
(
4
), pp.
553
574
.10.1063/1.857756
29.
Thomas
,
F. O.
, and
Chu
,
H. C.
,
1989
, “
An Experimental Investigation of the Transition of a Planar Jet: Subharmonic Suppression and Upstream Feedback
,”
Phys. Fluids A
,
1
(
9
), pp.
1566
1587
.10.1063/1.857333
30.
Knisely
,
C.
, and
Rockwell
,
D.
,
1982
, “
Self-Sustained Low-Frequency Components in an Impinging Shear Layer
,”
J. Fluid Mech.
,
116
, pp.
157
186
.10.1017/S002211208200041X
You do not currently have access to this content.