Abstract

Numerical prediction of cavitation erosion is a great scientific and technological challenge. In the past, many attempts were made—many successful. One of the issues when a comparison between a simulation and erosion experiments is made, is the great difference in time scale. In this work, we do not attempt to obtain quantitatively accurate predictions of erosion process but concentrate qualitatively on cavitation mechanisms with quantitative prediction of pressure pulses which lead to erosion. This is possible, because of our recent experimental work on simultaneous observation of cavitating flow and cavitation erosion by high speed cameras. In this study, the numerical simulation was used to predict details of the cavitation process during the vapor collapse phase. The fully compressible, cavitating flow simulations were performed to resolve the formation of the pressure waves at cavitation collapse. We tried to visualize the mechanisms and dynamics of vapor structures during collapse phase at the Venturi geometry. The obtained results show that unsteady Reynolds-averaged Navier–Stokes (URANS) simulation of cavitation is capable of reproducing four out of five mechanisms of cavitation erosion, found during experimental work.

References

1.
Lord Rayleigh
,
F. R. S.
,
1917
, “
VIII. On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
34
(
200
), pp.
94
98
.10.1080/14786440808635681
2.
Plesset
,
M. S.
, and
Chapman
,
R. B.
,
1971
, “
Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary
,”
J. Fluid Mech.
,
47
(
2
), pp.
283
290
.10.1017/S0022112071001058
3.
Franc
,
J. P.
,
2017
, “
The Rayleigh-Plesset Equation: A Simple and Powerful Tool to Understand Various Aspects of Cavitation
,”
Fluid Dynamics of Cavitation and Cavitating Turbopumps
,
L.
d'Agostino
, and
M. V.
Salvetti
, eds.,
Springer
,
Vienna, Austria
, pp.
1
42
.
4.
Isselin
,
J. C.
,
Alloncle
,
A. P.
, and
Autric
,
M.
,
1998
, “
On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena
,”
J. Appl. Phys.
,
84
(
10
), pp.
5766
5771
.10.1063/1.368841
5.
Sagar
,
H. J.
,
Hanke
,
S.
,
Underberg
,
M.
,
Feng
,
C.
,
el Moctar
,
O.
, and
Kaiser
,
S. A.
,
2018
, “
Experimental and Numerical Investigation of Damage on an Aluminum Surface by Single-Bubble Cavitation
,”
Mater. Perform. Charact.
,
7
(
5
), pp.
985
1003
.
6.
Hansson
,
I.
,
Kedrinskii
,
V.
, and
Morch
,
K. A.
,
1982
, “
On the Dynamics of Cavity Clusters
,”
J. Phys. D: Appl. Phys.
,
15
(
9
), pp.
1725
1734
.10.1088/0022-3727/15/9/017
7.
Biluš
,
I.
,
Bombek
,
G.
,
Hočevar
,
M.
,
Širok
,
B.
, and
Cenčič
,
T.
,
2014
, “
The Experimental Analysis of Cavitating Structure Fluctuations and Pressure Pulsations in the Cavitation Station
,”
J. Mech. Eng.
,
60
(
3
), pp.
147
157
.10.5545/sv-jme.2013.1462
8.
Biluš
,
I.
,
Bizjan
,
B.
,
Lešnik
,
L.
,
Širok
,
B.
,
Pečnik
,
B.
, and
Dular
,
M.
,
2017
, “
Non-Contact Method for Analysis of Cavitating Flows
,”
Ultrasonics
,
81
, pp.
178
186
.10.1016/j.ultras.2017.03.011
9.
Gomboc
,
T.
,
Zadravec
,
M.
,
Ilijaz
,
J.
,
Sagadin
,
G.
, and
Hribersek
,
M.
,
2019
, “
Numerical Model of Three Stage Spray Drying for Zeolite 4A—Water Suspensions Coupled With CFD Flow Field
,”
Int. J. Simul. Modell.
,
18
(
2
), pp.
217
228
.10.2507/IJSIMM18(2)462
10.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech., B
,
24
(
4
), pp.
522
538
.10.1016/j.euromechflu.2004.10.004
11.
Znidarcic
,
A.
,
Coutier-Delgosha
,
O.
,
Marquillie
,
M.
, and
Dular
,
M.
,
2015
, “
An Algorithm for Fast DNS Cavitating Flows Simulations Using Homogeneous Mixture Approach
,”
J. Phys.: Conf. Ser.
,
656
(
1
), p.
012143
.10.1088/1742-6596/656/1/012143
12.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
13.
Mottyll
,
S.
, and
Skoda
,
R.
,
2016
, “
Numerical 3D Flow Simulation of Ultrasonic Horns With Attached Cavitation Structures and Assessment of Flow Aggressiveness and Cavitation Erosion Sensitive Wall Zones
,”
Ultrason. Sonochem.
,
31
, pp.
570
589
.10.1016/j.ultsonch.2016.01.025
14.
Morgut
,
M.
,
Jošt
,
D.
,
Škerlavaj
,
A.
,
Nobile
,
E.
, and
Contento
,
G.
,
2018
, “
Numerical Predictions of Cavitating Flow Around a Marine Propeller and Kaplan Turbine Runner With Calibrated Cavitation Models
,”
J. Mech. Eng.
,
64
(
9
), pp.
543
554
.
15.
Bilus
,
I.
,
Morgut
,
M.
, and
Nobile
,
E.
,
2013
, “
Simulation of Sheet and Cloud Cavitation With Homogenous Transport Models
,”
Int. J. Simul. Modell.
,
12
(
2
), pp.
94
106
.10.2507/IJSIMM12(2)3.229
16.
Van Terwisga
,
T. J. C.
,
Fitzsimmons
,
P. A.
,
Foeth
,
E. J.
, and
Li
,
Z.
,
2009
, “
Cavitation Erosion: A Critical Review of Physical Mechanisms and Erosion Risk Models
,”
Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 16–20, pp.
1
13
.https://deepblue.lib.umich.edu/handle/2027.42/84241
17.
Bark
,
J. T.
,
Friesch
,
G.
,
Kuiper
,
J.
, and
Ligtelijn
,
G.
,
2004
, “
Cavitation Erosion on Ship Propellers and Rudders
,”
Ninth Symposium on Practical Design of Ships and Other Floating Structures
, Luebeck-Travemuende, Germany, Sept. 12–17, pp.
554
561
.
18.
Li
,
Z.
,
Pourquie
,
M.
, and
van Terwisga
,
T. J. C.
,
2014
, “
Assessment of Cavitation Erosion With a URANS Method
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
041101
.10.1115/1.4026195
19.
Johnsen
,
E.
, and
Colonius
,
T.
,
2008
, “
Shock-Induced Collapse of a Gas Bubble in Shockwave Lithotripsy
,”
J. Acoust. Soc. Am.
,
124
(
4
), pp.
2011
2020
.10.1121/1.2973229
20.
Budich
,
B.
,
Borrmann
,
F.
,
Schmidt
,
S. J.
, and
Adams
,
N. A.
,
2015
, “
Assessment of Erosion Aggressiveness for the Cavitating Model Propeller VP1304 by Fully Compressible Numerical Simulation
,” Proceedings of 18th Numerical Towing Tank Symposium (
NuTTS 2015
), Marstrand, Sweden, Sept. 28–30, pp.
1
6
. https://www.researchgate.net/publication/283076408_Assessment_of_Erosion_Aggressiveness_for_the_Cavitating_Model_Propeller_VP1304_by_Fully_Compressible_Numerical_Simulation
21.
Melissaris
,
T.
,
Bulten
,
N.
, and
van Terwisga
,
T. J. C.
,
2019
, “
On the Applicability of Cavitation Erosion Risk Models With a URANS Solver
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101104
.10.1115/1.4043169
22.
Petkovšek
,
M.
, and
Dular
,
M.
,
2013
, “
Simultaneous Observation of Cavitation Structures and Cavitation Erosion
,”
Wear
,
300
(
1–2
), pp.
55
64
.10.1016/j.wear.2013.01.106
23.
Dular
,
M.
,
Pozar
,
T.
,
Zevnik
,
J.
, and
Petkovšek
,
R.
,
2019
, “
High Speed Observation of Damage Created by a Collapse of a Single Cavitation Bubble
,”
Wear
,
418–419
, pp.
13
23
.10.1016/j.wear.2018.11.004
24.
Dular
,
M.
,
Coutier-Delgosha
,
O.
, and
Petkovšek
,
M.
,
2013
, “
Observations of Cavitation Erosion Pit Formation
,”
Ultrason. Sonochem.
,
20
(
4
), pp.
1113
1120
.10.1016/j.ultsonch.2013.01.011
25.
Dular
,
M.
, and
Coutier-Delgosha
,
O.
,
2008
, “
Numerical Modelling of Cavitation Erosion
,”
ASME
Paper No. FEDSM2008-55034.10.1115/FEDSM2008-55034
26.
Dular
,
M.
, and
Coutier-Delgosha
,
O.
,
2009
, “
Numerical Modelling of Cavitation Erosion
,”
Int. J. Numer. Methods Fluids
,
61
(
12
), pp.
1388
1410
.10.1002/fld.2003
27.
Wang
,
J.
,
Petkovšek
,
M.
,
Houlin
,
L.
,
Širok
,
B.
, and
Dular
,
M.
,
2015
, “
Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051302
.10.1115/1.4029533
28.
Peters
,
A.
,
Lantermann
,
U.
, and
el Moctar
,
O.
,
2018
, “
Numerical Prediction of Cavitation Erosion on a Ship Propeller in Model- and Full-Scale
,”
Wear
,
408–409
, pp.
1
12
.10.1016/j.wear.2018.04.012
29.
Koukouvinis
,
P.
,
Gavaises
,
M.
,
Li
,
J.
, and
Wang
,
L.
,
2016
, “
Large Eddy Simulation of Diesel Injector Including Cavitation Effects and Correlation to Erosion Damage
,”
Fuel
,
175
, pp.
26
39
.10.1016/j.fuel.2016.02.037
30.
Schenke
,
S.
, and
van Terwisga
,
T. J. C.
,
2019
, “
An Energy Conservative Method to Predict the Erosive Aggressiveness of Collapsing Cavitating Structures and Cavitating Flows From Numerical Simulations
,”
Int. J. Multiphase Flow
,
111
, pp.
200
218
.10.1016/j.ijmultiphaseflow.2018.11.016
31.
Dular
,
M.
, and
Petkovšek
,
M.
,
2015
, “
On the Mechanisms of Cavitation Erosion—Combining High Speed Videos to Damage Patterns
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
359
370
.10.1016/j.expthermflusci.2015.06.001
32.
Petkovšek
,
M.
, and
Dular
,
M.
,
2017
, “
Observing the Thermodynamic Effects in Cavitating Flow by IR Thermography
,”
Exp. Thermal Fluid Sci.
,
88
, pp.
450
460
.10.1016/j.expthermflusci.2017.07.001
33.
Zwart
,
P.
,
Gerber
,
A.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
(
ICMF
), Jokohama, Japan, May 30–June 4, p.
152
. https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
34.
Morgut
,
M.
,
Nobile
,
E.
, and
Biluš
,
I.
,
2011
, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
620
626
.10.1016/j.ijmultiphaseflow.2011.03.005
35.
Morgut
,
M.
, and
Nobile
,
E.
,
2012
, “
Numerical Predictions of Cavitating Flow Around Model Scale Propellers by CFD and Advanced Model Calibration
,”
Int. J. Rotating Mach.
,
2012
, p.
618180
.10.1155/2012/618180
36.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
London
.
37.
Shamsborhan
,
H.
,
Coutier-Delgosha
,
O.
,
Caignaert
,
G.
, and
Nour
,
F. A.
,
2010
, “
Experimental Determination of the Speed of Sound in Cavitating Flows
,”
Exp. Fluids
,
49
(
6
), pp.
1359
1373
.10.1007/s00348-010-0880-6
38.
Roache
,
P. K.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
39.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Read
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p. 0
78001
. 10.1115/1.2960953
40.
Fortes-Patella
,
R.
,
Reboud
,
J. L.
, and
Briancon-Marjollet
,
L.
,
2004
, “
A Phenomenological and Numerical Model for Scaling the Flow Aggressiveness in Cavitation Erosion
,”
Cavitation Erosion Workshop
, Val de Reuil, France, May 27–28, pp.
1
36
. https://www.researchgate.net/publication/281921326_A_Phenomenological_and_numerical_model_for_scaling_the_flow_agressiveness_in_cavitation_erosion
41.
Dular
,
M.
,
Bachert
,
B.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.10.1016/j.wear.2004.08.004
42.
Vogel
,
A.
,
Busch
,
S.
, and
Parlitz
,
U.
,
1996
, “
Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
148
165
.10.1121/1.415878
43.
Khlifa
,
I.
,
Vabre
,
A.
,
Hočevar
,
M.
,
Fezzaa
,
K.
,
Fuzier
,
S.
,
Roussette
,
O.
, and
Coutier-Delgosha
,
O.
,
2017
, “
Fast X-Ray Imaging of Cavitating Flows
,”
Exp. Fluids
,
58
(
11
), p.
157
.10.1007/s00348-017-2426-7
44.
Reisman
,
G. E.
,
Wang
,
Y. C.
, and
Brennen
,
C. E.
,
1998
, “
Observations OD Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
,
355
, pp.
255
283
.10.1017/S0022112097007830
45.
Ganesh
,
H.
,
Makiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2017
, “
Bubbly Shock Propagation as a Mechanism of Shedding in Separated Cavitating Flows
,”
J. Hydrodyn.
,
29
(
6
), pp.
907
916
.10.1016/S1001-6058(16)60805-3
You do not currently have access to this content.