Abstract

Cavitation may develop on upward-launched submerged objects approaching sea surface with high speed. In this work, the cavitation shedding and collapse during the water-exit of an axisymmetric projectile is investigated using large eddy simulation (LES). High resolution is guaranteed by carefully fulfilling the requisites of y+<1, Δx+<100, and Δz+<40 to resolve at least 80% of the turbulent kinetic energy. The result indicates that the cavity in growth is always undeveloped as the ambient hydrostatic pressure keeps decreasing. The cavity is pushed by the water surface to shed downward and keep shrinking until its final collapse. The vapor inside cavity during the water-exit process is separated by a layer of water so as not to mix with the air. The front of the re-entrant jet barely catches up with the moving wall, and the cavity is pinched off by the joint effect of the jet front and water surface. It is also found that the angle of attack (AOA) generates inversely inclined liquid-vapor contact lines of the cavity leading edge and cavity closure. The advancing contact lines finally intersect on the pressure side to make the cavity break off, which can cause noticeable pressure impulse on the break-off spot. The pressure feature of the water-exit cavitation evolution is studied with intensively arranged monitor points on the wall, which can sense pressure peaks when the liquid-vapor contact lines sweep over them. The instantaneous high pressure induced by cavitation collapse is resolved.

References

1.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.10.1017/S0022112001005420
2.
Arndt
,
R. E. A.
,
2002
, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
143
175
.10.1146/annurev.fluid.34.082301.114957
3.
Coutier-Delgosha
,
O.
,
Stutz
,
B.
,
Vabre
,
A.
, and
Legoupil
,
S.
,
2007
, “
Analysis of Cavitating Flow Structure by Experimental and Numerical Investigations
,”
J. Fluid Mech.
,
578
, pp.
171
222
.10.1017/S0022112007004934
4.
Foeth
,
E. J.
,
van Terwisga
,
T.
, and
van Doorne
,
C.
,
2008
, “
On the Collapse Structure of an Attached Cavity on a Three-Dimensional Hydrofoil
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
071303
.10.1115/1.2928345
5.
Kawakami
,
D. T.
,
Fuji
,
A.
,
Tsujimoto
,
Y.
, and
Arndt
,
R. E. A.
,
2008
, “
An Assessment of the Influence of Environmental Factors on Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
031303
.10.1115/1.2842146
6.
Choi
,
J.
,
Hsiao
,
C. T.
,
Chahine
,
G.
, and
Ceccio
,
S.
,
2009
, “
Growth, Oscillation and Collapse of Vortex Cavitation Bubbles
,”
J. Fluid Mech
.,
624
, pp.
255
279
.10.1017/S0022112008005430
7.
Brandner
,
P. A.
,
Walker
,
G. J.
,
Niekamp
,
P. N.
, and
Anderson
,
B.
,
2010
, “
An Experimental Investigation of Cloud Cavitation About a Sphere
,”
J. Fluid Mech.
,
656
, pp.
147
176
.10.1017/S0022112010001072
8.
Zeravcic
,
Z.
,
Lohse
,
D.
, and
van Saarloos
,
W.
,
2011
, “
Collective Oscillations in Bubble Clouds
,”
J. Fluid Mech.
680
, pp.
114
149
.10.1017/jfm.2011.153
9.
Decaix
,
J.
, and
Goncalves
,
E.
,
2013
, “
Investigation of Three-Dimensional Effects on a Cavitating Venturi Flow
,”
Int. J. Heat Fluid Flow
,
44
, pp.
576
595
.10.1016/j.ijheatfluidflow.2013.08.013
10.
Gavaises
,
M.
,
Villa
,
F.
,
Koukouvinis
,
P.
,
Marengo
,
M.
, and
Franc
,
J. P.
,
2015
, “
Visualization and LES Simulation of Cavitation Cloud Formation and Collapse in an Axisymmetric Geometry
,”
Int. J. Multiphase Flow
,
68
, pp.
14
26
.10.1016/j.ijmultiphaseflow.2014.09.008
11.
Ganesh
,
H.
,
Makiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.10.1017/jfm.2016.425
12.
Peng
,
X.
,
Ji
,
B.
,
Cao
,
Y.
,
Xu
,
L.
,
Zhang
,
G.
,
Luo
,
X.
, and
Long
,
X.
,
2016
, “
Combined Experimental Observation and Numerical Simulation of the Cloud Cavitation With U-Type Flow Structures on Hydrofoils
,”
Int. J. Multiphase Flow
,
79
, pp.
10
22
.10.1016/j.ijmultiphaseflow.2015.10.006
13.
Xu
,
C.
,
Wang
,
Y.
,
Huang
,
C.
,
Yu
,
C.
, and
Huang
,
J.
,
2017
, “
Cloud Cavitating Flow That Surrounds a Vertical Hydrofoil Near the Free Surface
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101302
.10.1115/1.4036669
14.
Delannoy
,
Y.
, and
Kueny
,
J. L.
,
1990
, “
Two-Phase Flow Approach in Unsteady Cavitation Modeling
,”
Cavitation and Multiphase Flow Forum, ASME, New York, ASME-FED-Vol.
98, pp.
153
158
.
15.
Song
,
C. C. S.
, and
Qin
,
Q.
,
2001
, “
Numerical Simulation of Unsteady Cavitating Flows
,”
Proceedings of the Fourth International Symposium on Cavitation
,
Pasadena, CA
,
June 20–23
, Paper No. 105.
16.
Goncalves
,
E.
, and
Patella
,
R. F.
,
2009
, “
Numerical Simulation of Cavitating Flows With Homogeneous Models
,”
Comput. Fluids
,
38
(
9
), pp.
1682
1696
.10.1016/j.compfluid.2009.03.001
17.
Chen
,
Y.
,
Chen
,
X.
,
Gong
,
Z.
,
Li
,
J.
, and
Lu
,
C.
,
2016
, “
Numerical Investigation on the Dynamic Behavior of Sheet/Cloud Cavitation Regimes Around Hydrofoil
,”
Appl. Math. Modell.
,
40
(
11–12
), pp.
5835
5857
.10.1016/j.apm.2016.01.031
18.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.10.1016/S0045-7930(99)00039-0
19.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
20.
Saito
,
Y.
,
Takami
,
R.
,
Nakamori
,
I.
, and
Ikohagi
,
T.
,
2007
, “
Numerical Analysis of Unsteady Behavior of Cloud Cavitation Around a NACA0015 Foil
,”
Comput. Mech.
,
40
(
1
), pp.
85
96
.10.1007/s00466-006-0086-1
21.
Durbin
,
P.
,
2009
, “
Limiters and Wall Treatments in Applied Turbulence Modeling
,”
Fluid Dyn. Res.
,
41
(
1
), p.
012203
.10.1088/0169-5983/41/1/012203
22.
Goncalves
,
E.
, and
Charriere
,
B.
,
2014
, “
Modelling for Isothermal Cavitation With a Four-Equation Model
,”
Int. J. Multiphase Flow
,
59
, pp.
54
72
.10.1016/j.ijmultiphaseflow.2013.10.015
23.
Helluy
,
P.
, and
Seguin
,
N.
,
2006
, “
Relaxation Models of Phase Transition Flows
,”
Math. Modell. Numer. Anal.
,
40
(
2
), pp.
331
352
.10.1051/m2an:2006015
24.
Chen
,
Y.
,
Lu
,
C.
,
Chen
,
X.
,
Li
,
J.
, and
Gong
,
Z.
,
2017
, “
Numerical Investigation on the Time-Resolved Bubble Cluster Dynamics Using the Interface Capturing Method of Multiphase Flow Approach
,”
J. Hydrodyn.
,
29
(
3
), pp.
485
494
.10.1016/S1001-6058(16)60760-6
25.
Rouse
,
H.
, and
McNown
,
J. S.
,
1948
,
Cavitation and Pressure Distribution, Head Forms at Zero Angle of Yaw
(Studies in Engineering Bulletin), Vol.
32
,
State University of Iowa
,
Iowa City, IA
.
26.
Vlasenko
,
Y. D.
,
2003
, “
Experimental Investigation of Supercavitation Flow Regimes at Subsonic and Transonic Speeds
,”
Proceedings of the Fifth International Symposium on Cavitation
,
Osaka, Japan
,
Nov. 1–4
, Paper No. Cav03-GS-6-006.
27.
Huang
,
B.
,
Wang
,
G.
,
Quan
,
X.
, and
Zhang
,
M.
,
2011
, “
Study on the Unsteady Cavitating Flow Dynamic Characteristics Around a 0-Caliber Ogive Revolution Body
,”
J. Exp. Fluid Mech.
,
25
(
2
), pp.
22
28 (in Chinese
).
28.
Owis
,
F. M.
, and
Nayfeh
,
A. H.
,
2003
, “
Computation of the Compressible Multiphase Flow Over the Cavitating High-Speed Torpedo
,”
ASME J. Fluids Eng.
,
125
(
3
), pp.
459
468
.10.1115/1.1568358
29.
Chen
,
Y.
,
Lu
,
C.
, and
Guo
,
J.
,
2010
, “
Numerical Study of the Cavitating Flows Over Underwater Vehicle With Large Angle of Attack
,”
J. Hydrodyn.
,
22
(
5
), pp.
850
855
.10.1016/S1001-6058(10)60048-0
30.
Chen
,
Y.
,
Lu
,
C.
,
Cao
,
J.
, and
Chen
,
X.
,
2012
, “
Application of Quadratic and Cubic Turbulence Models on Cavitating Flows Around Submerged Objects
,”
J. Hydrodyn.
,
24
(
6
), pp.
823
833
.10.1016/S1001-6058(11)60309-0
31.
Chen
,
Y.
,
Lu
,
C.
,
Chen
,
X.
, and
Cao
,
J.
,
2015
, “
Numerical Investigation on the Cavitation Collapse Regime Around the Submerged Vehicles Navigating With Deceleration
,”
Eur. J. Mech. B: Fluids
,
49
, pp.
153
170
.10.1016/j.euromechflu.2014.08.005
32.
Korobkin
,
A. A.
,
2013
, “
A Linearized Model of Water Exit
,”
J. Fluid Mech.
,
737
, pp.
368
386
.10.1017/jfm.2013.573
33.
Tassin
,
A.
,
Piro
,
D. J.
,
Korobkin
,
A. A.
,
Maki
,
K. J.
, and
Cooker
,
M. J.
,
2013
, “
Two-Dimensional Water Entry and Exit of a Body Whose Shape Varies in Time
,”
J. Fluids Struct.
,
40
, pp.
317
336
.10.1016/j.jfluidstructs.2013.05.002
34.
Rajavaheinthan
,
R.
, and
Greenhow
,
M.
,
2015
, “
Constant Acceleration Exit of Two-Dimensional Free-Surface-Piercing Bodies
,”
Appl. Ocean Res.
,
50
, pp.
30
46
.10.1016/j.apor.2014.07.007
35.
Korobkin
,
A. A.
,
Khabakhpasheva
,
T. I.
, and
Maki
,
K. J.
,
2017
, “
Hydrodynamic Forces in Water Exit Problems
,”
J. Fluids Struct.
,
69
, pp.
16
33
.10.1016/j.jfluidstructs.2016.12.002
36.
Sato
,
K.
, and
Shimojo
,
S.
,
2003
, “
Detailed Observations on a Starting Mechanism for Shedding of Cavitation Cloud
,”
Proceedings of the Fifth International Symposium on Cavitation
,
Osaka, Japan
,
Nov. 1–4
, Paper No. Cav03-GS-4-009.
37.
Liu
,
Z.
,
Yi
,
S.
,
Yan
,
K.
,
Xu
,
S.
, and
Wang
,
B.
,
2003
, “
Numerical Simulation of Water-Exit Cavity
,”
Proceedings of the Fifth International Symposium on Cavitation
,
Osaka, Japan
,
Nov. 1–4
, Paper No. Cav03-OS-7-018.
38.
Quan
,
X.
,
Li
,
Y.
,
Wei
,
H.
,
Wang
,
B.
, and
Kong
,
D.
,
2008
, “
Cavitation Collapse Characteristic Research in the Water-Exit Progress of Underwater Vehicles
,”
J. Ship Mech.
,
12
(
4
), pp.
545
549 (in Chinese
).
39.
Chu
,
X.-S.
,
Yan
,
K.
,
Wang
,
Z.
,
Zhang
,
K.
,
Feng
,
G.
, and
Chen
,
W.-Q.
,
2010
, “
Numerical Simulation of Water-Exit of a Cylinder with Cavities
,”
J. Hydrodyn.
,
22
(
S1
), pp.
834
881
.10.1016/S1001-6058(10)60045-5
40.
Huang
,
B.
,
Zhao
,
Y.
, and
Wang
,
G.
,
2014
, “
Large Eddy Simulation of Turbulent Vortex-Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows
,”
Comput. Fluids
,
92
, pp.
113
124
.10.1016/j.compfluid.2013.12.024
41.
Örley
,
F.
,
Trummler
,
T.
,
Hickel
,
S.
,
Mihatsch
,
M. S.
,
Schmidt
,
S. J.
, and
Adams
,
N.
,
2015
, “
Large-Eddy Simulation of Cavitating Nozzle Flow and Primary Jet Break-Up
,”
Phys. Fluids
,
27
(
8
), p.
086101
.10.1063/1.4928701
42.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E. A.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.10.1016/j.ijmultiphaseflow.2014.10.008
43.
Pendar
,
M. R.
, and
Roohi
,
E.
,
2016
, “
Investigation of Cavitation around 3D Hemispherical Head-Form Body and Conical Cavitators Using Different Turbulence and Cavitation Models
,”
Ocean Eng.
,
112
(
2
), pp.
287
306
.10.1016/j.oceaneng.2015.12.010
44.
Chen
,
Y.
,
Chen
,
X.
,
Li
,
J.
,
Gong
,
Z.
, and
Lu
,
C.
,
2017
, “
Large Eddy Simulation and Investigation on the Flow Structure of the Cascading Cavitation Shedding Regime Around 3D Twisted Hydrofoil
,”
Ocean Eng.
,
129
, pp.
1
19
.10.1016/j.oceaneng.2016.11.012
45.
Long
,
X.
,
Cheng
,
H.
,
Ji
,
B.
,
Arndt
,
R. E. A.
, and
Peng
,
X.
,
2018
, “
Large Eddy Simulation and Euler-Lagrangian Coupling Investigation of the Transient Cavitating Turbulent Flow Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
100
, pp.
41
56
.10.1016/j.ijmultiphaseflow.2017.12.002
46.
Chen
,
Y.
,
Li
,
J.
,
Gong
,
Z.
,
Chen
,
X.
, and
Lu
,
C.
,
2019
, “
Large Eddy Simulation and Investigation on the Laminar-Turbulent Transition and Turbulence-Cavitation Interaction in the Cavitating Flow around Hydrofoil
,”
Int. J. Multiphase Flow
,
112
, pp.
300
322
.10.1016/j.ijmultiphaseflow.2018.10.012
47.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
48.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments with the Primitive Equations—I: The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP=2.3.CO;2
49.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proceedings of the Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
,
May 30–June 3
, Paper No. 152.
50.
Seo
,
J. H.
,
Lele
,
S. K.
, and
Tryggvason
,
G.
,
2010
, “
Investigation and Modeling of Bubble-Bubble Interaction Effect in Homogeneous Bubbly Flows
,”
Phys. Fluids
,
22
(
6
), p.
063302
.10.1063/1.3432503
51.
Demirdzic
,
I.
,
Lilek
,
Z.
, and
Peric
,
M.
,
1993
, “
A Collocated Finite Volume Method for Predicting Flows at All Speeds
,”
Int. J. Numer. Methods Fluids
,
16
(
12
), pp.
1029
1050
.10.1002/fld.1650161202
52.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
,
1986
, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer
,
9
(
5
), pp.
511
537
.10.1080/10407798608552152
53.
Leonard
,
B. P.
,
1991
, “
The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-Dimensional Advection
,”
Comput. Methods Appl. Mech. Eng.
,
88
(
1
), pp.
17
74
.10.1016/0045-7825(91)90232-U
54.
Anderson
,
W.
, and
Bonhus
,
D. L.
,
1994
, “
An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids
,”
Comput. Fluids
,
23
(
1
), pp.
1
21
.10.1016/0045-7930(94)90023-X
55.
Muzaferija
,
S.
,
Peric
,
M.
,
Sames
,
P. C.
, and
Schellin
,
T. E.
,
1998
, “
A Two-Fluid Navier–Stokes Solver to Simulate Water Entry
,”
Proceedings of the 22nd Symposium on Naval Hydrodynamics
,
Washington, DC
,
Aug. 10–14
, pp.
277
289
.
56.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
57.
Deardorff
,
J. W.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
(
2
), pp.
453
480
.10.1017/S0022112070000691
58.
Scotti
,
A.
,
Meneveau
,
C.
, and
Lilly
,
D. K.
,
1993
, “
Generalized Smagorinsky Model for Anisotropic Grids
,”
Phys. Fluids A
,
5
(
9
), pp.
2306
2308
.10.1063/1.858537
59.
Piomelli
,
U.
, and
Chasnov
,
J. R.
,
1996
, “
Large-Eddy Simulations: Theory and Applications
,”
Turbulence and Transition Modelling
,
M.
Hallback
,
D. S.
Henningson
,
A. V.
Johansson
, and
P. H.
Alfredsson
, eds.,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
, pp.
269
331
.
60.
Davidson
,
L.
,
2009
, “
Large Eddy Simulations: How to Evaluate Resolution
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
1016
1025
.10.1016/j.ijheatfluidflow.2009.06.006
61.
Benard
,
P.
,
Balarac
,
G.
,
Moureau
,
V.
,
Dobrzynski
,
C.
,
Lartigue
,
G.
, and
D'Angelo
,
Y.
,
2016
, “
Mesh Adaptation for Large-Eddy Simulations in Complex Geometries
,”
Int. J. Numer. Methods Fluids
,
81
(
12
), pp.
719
740
.10.1002/fld.4204
You do not currently have access to this content.