In the present study, cavitation erosion is investigated by implementing an Eulerian–Lagrangian approach. Three-dimensional two-phase flow is simulated in a microscale nozzle using Reynolds-averaged Navier–Stokes (RANS) solver along with realizable kε turbulence model and Schnerr–Sauer cavitation model. The numerical results are in agreement with experimental observations. A modified form of Rayleigh–Plesset–Keller–Herring equation along with bubble motion equation is utilized to simulate bubble dynamics. Average values of mixture properties over bubble surface are used instead of bubble-center values in order to account for nonuniformities around the bubble. A one-way coupling method is used between Lagrangian analysis and RANS solution. The impact pressure resulted from bubble collapse is calculated for evaluation of erosion in diesel and soy methyl ester (SME) biodiesel in different situations. The results show that the initial size of the bubbles is an important factor for determining the intensity of erosion. So, the bubbles erosive power increases when their initial radius increases. It is also found that the intensity of erosion in diesel is much higher than that of biodiesel and this is because of the differences in fuels properties, especially in viscosity and vapor pressure. The effect of bubbles initial position on erosion intensity is also investigated in this study, and it is found that bubbles with the highest distance from sheet cavity termination have the highest contribution in erosion rate.

References

1.
Ma
,
J.
,
Chahine
,
G. L.
, and
Hsiao
,
C.
,
2015
, “
Spherical Bubble Dynamics in a Bubbly Medium Using an Euler–Lagrange Model
,”
Chem. Eng. Sci.
,
128
, pp.
64
81
.
2.
Hsiao
,
C. T.
,
Choi
,
J. K.
,
Singh
,
S.
,
Chahine
,
G. L.
,
Hay
,
T. A.
,
Ilinskii
,
Y. A.
,
Zabolotskaya
,
E. A.
,
Hamilton
,
M. F.
,
Sankin
,
G.
,
Yuan
,
F.
, and
Zhong
,
P.
,
2013
, “
Modelling Single-and Tandem-Bubble Dynamics Between Two Parallel Plates for Biomedical Applications
,”
J. Fluid Mech.
,
716
, pp.
137
170
.
3.
Tamaki
,
N.
,
Shimizu
,
M.
, and
Hiroyasu
,
H.
,
2001
, “
Enhancement of the Atomization of a Liquid Jet by Cavitation in a Nozzle Hole
,”
Atomization Sprays
,
11
(
2
), pp. 125–137.
4.
Jia
,
M.
,
Xie
,
M.
,
Liu
,
H.
,
Lam
,
W.-H. H.
, and
Wang
,
T.
,
2011
, “
Numerical Simulation of Cavitation in the Conical-Spray Nozzle for Diesel Premixed Charge Compression Ignition Engines
,”
Fuel
,
90
(
8
), pp.
2652
2661
.
5.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
, Cambridge, UK.
6.
Van Wijngaarden
,
L.
,
2016
, “
Mechanics of Collapsing Cavitation Bubbles
,”
Ultrason. Sonochem.
,
29
, pp.
524
527
.
7.
Sagar
,
H. J.
, and
el Moctar
,
O.
,
2018
, “
Numerical Simulation of a Laser-Induced Cavitation Bubble Near a Solid Boundary Considering Phase Change
,”
Ship Technol. Res.
,
65
(
3
), pp.
163
179
.
8.
Sagar
,
H. J.
,
Hanke
,
S.
,
Underberg
,
M.
,
Feng
,
C.
,
el Moctar
,
O.
, and
K
,
S. A.
,
2018
, “
Experimental and Numerical Investigation of Damage on an Aluminum Surface by Single-Bubble Cavitation
,”
Mater. Perform. Charact.
,
7
(
5
), pp.
985
1003
.
9.
Sagar, H. J., 2018, “
Numerical and Experimental Investigation of Laser-Induced Cavitation Bubbles and Induced Damage
,” Ph.D. thesis, University of Duisburg-Essen, Duisburg, Germany.
10.
Crowe
,
C. T.
,
Troutt
,
T. R.
, and
Chung
,
J. N.
,
1996
, “
Numerical Models for Two-Phase Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
11
43
.
11.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.
12.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2009
, “
Numerical Prediction of Cavitation Erosion in Cavitating Flow
,”
Seventh International Symposium on Cavitation
(
CAV
2009), Ann Arbor, MI, Aug. 17–22, pp.
1
9
.https://deepblue.lib.umich.edu/bitstream/handle/2027.42/84264/CAV2009-final67.pdf?sequence=1&isAllowed=y
13.
Farrell
,
K. J.
,
2003
, “
Eulerian/Lagrangian Analysis for the Prediction of Cavitation Inception
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
46
52
.
14.
Giannadakis
,
E.
,
Gavaises
,
M.
, and
Arcoumanis
,
C.
,
2008
, “
Modelling of Cavitation in Diesel Injector Nozzles
,”
J. Fluid Mech.
,
616
, pp.
153
193
.
15.
Nohmi
,
M.
,
Ikohagi
,
T.
,
Iga
,
Y.
,
Ikohagi
,
T.
, and
Iga
,
Y.
,
2008
, “
Numerical Prediction Method of Cavitation Erosion
,”
ASME
Paper No. FEDSM2008.
16.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2010
, “
Numerical Prediction of Cavitation Erosion Intensity in Cavitating Flows Around a Clark Y 11.7% Hydrofoil
,”
J. Fluid Sci. Technol.
,
5
(
3
), pp.
416
431
.
17.
Ochiai
,
N.
,
Iga
,
Y.
,
Nohmi
,
M.
, and
Ikohagi
,
T.
,
2012
, “
Study of Quantitative Numerical Prediction of Cavitation Erosion in Cavitating Flow
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011302
.
18.
Zeidi
,
S. M. J.
, and
Mahdi
,
M.
,
2015
, “
Evaluation of the Physical Forces Exerted on a Spherical Bubble Inside the Nozzle in a Cavitating Flow With an Eulerian/Lagrangian Approach
,”
Eur. J. Phys.
,
36
(
6
), p.
065041
.
19.
Gavaises
,
M.
,
2008
, “
Flow in Valve Covered Orifice Nozzles With Cylindrical and Tapered Holes and Link to Cavitation Erosion and Engine Exhaust Emissions
,”
Int. J. Engine Res.
,
9
(
6
), pp.
435
447
.
20.
Peters
,
A.
,
Lantermann
,
U.
, and
el Moctar
,
O.
, 2018, “
Simulation of an Internal Nozzle Flow Using an Euler-Lagrange Method
,” Tenth International Symposium on Cavitation (CAV 2018), Baltimore, MD, May 14–16.
21.
Hasuike
,
N.
,
Yamasaki
,
S.
, and
Ando
,
J.
,
2009
, “
Numerical Study on Cavitation Erosion Risk of Marine Propellers Operating in Wake Flow
,”
Seventh International Symposium on Cavitation
(
CAV
2009), Ann Arbor, MI, Aug. 16–20, pp.
1
14
.https://deepblue.lib.umich.edu/handle/2027.42/84232
22.
Soyama
,
H.
,
Kumano
,
H.
, and
Saka
,
M.
,
2001
, “
A New Parameter to Predict Cavitation Erosion
,”
Fourth International Symposium on Cavitation
, Pasadena, CA, June 20–23, pp.1–8.
23.
Fukaya
,
M.
,
Tamura
,
Y.
, and
Matsumoto
,
Y.
,
2009
, “
Prediction of Impeller Speed Dependence of Cavitation Intensity in Centrifugal Pump by Using Cavitating Flow Simulation With Bubble Flow Model
,”
Seventh International Symposium on Cavitation
(
CAV
2009), Ann Arbor, MI, Aug. 16–20, pp.
1
7
.https://deepblue.lib.umich.edu/handle/2027.42/84313
24.
Skoda
,
R.
,
Iben
,
U.
,
Gmbh
,
R. B.
,
Morozov
,
A.
,
Mihatsch
,
M.
,
Schmidt
,
S. J.
,
Adams
,
N. A.
, and
Mechanics
,
F.
,
2011
, “
Numerical Simulation of Collapse Induced Shock Dynamics for the Prediction of the Geometry, Pressure and Temperature Impact on the Cavitation Erosion in Micro Channels
,”
WIMRC Third International Cavitation Forum
, Coventry, UK, July 4–6, pp.
1
10
.
25.
Edelbauer
,
W.
,
Strucl
,
J.
, and
Morozov
,
A.
, 2016, “
Large Eddy Simulation of Cavitating Throttle Flow
,”
Advances in Hydroinformatics
, Springer, Singapore, pp. 501–517.
26.
Som
,
S.
,
Longman
,
D. E.
,
Ramírez
,
A. I.
, and
Aggarwal
,
S. K.
,
2010
, “
A Comparison of Injector Flow and Spray Characteristics of Biodiesel With Petrodiesel
,”
Fuel
,
89
(
12
), pp.
4014
4024
.
27.
Battistoni
,
M.
, and
Grimaldi
,
C. N.
,
2012
, “
Numerical Analysis of Injector Flow and Spray Characteristics From Diesel Injectors Using Fossil and Biodiesel Fuels
,”
Appl. Energy
,
97
, pp.
656
666
.
28.
Bergeles
,
G.
,
Li
,
J.
,
Wang
,
L.
,
Koukouvinis
,
F.
, and
Gavaises
,
M.
,
2015
, “
An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers
,”
SAE Int. J. Engines
,
8
(
5
), pp.
2276
2284
.
29.
Li
,
D.
,
Kang
,
Y.
,
Wang
,
X.
,
Ding
,
X.
, and
Fang
,
Z.
,
2016
, “
Effects of Nozzle Inner Surface Roughness on the Cavitation Erosion Characteristics of High Speed Submerged Jets
,”
Exp. Therm. Fluid Sci.
,
74
, pp.
444
452
.
30.
Winklhofer
,
E.
,
Kull
,
E.
,
Kelz
,
E.
, and
Morozov
,
A.
,
2001
, “
Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments Under Cavitation Conditions
,”
ILASS-Europe Conference
, Zurich, Switzerland, Sept. 2–6, pp.
574
579
.https://www.researchgate.net/profile/E_Winklhofer/publication/303919397_Comprehensive_hydraulic_and_flow_field_documentation_in_model_throttle_experiments_under_cavitation_conditions/links/57907d9908ae4e917d01d22c/Comprehensive-hydraulic-and-flow-field-documentation-in-model-throttle-experiments-under-cavitation-conditions.pdf
31.
Martynov
,
S.
, 2005, “
Numerical Simulation of the Cavitation Process in Diesel Fuel Injectors
,” Ph.D. thesis, University of Brighton, Hastings, UK.
32.
Zeidi
,
S. M. J.
, and
Mahdi
,
M.
,
2014
, “
Effects of Nozzle Geometry and Fuel Characteristics on Cavitation Phenomena in Injection Nozzles
,”
22nd Annual International Conference on Mechanical Engineering (ISME2014)
, Ahvaz, Iran, Apr. 22–24, pp.
22
24
.
33.
Zeidi
,
S. M. J.
, and
Mahdi
,
M.
,
2014
, “
Investigation of Viscosity Effect on Velocity Profile and Cavitation Formation in Diesel Injector Nozzle
,”
Eighth International Conference on Internal Combustion Engines
, Tehran, Iran, p. 9.
34.
Zeidi
,
S.
, and
Mahdi
,
M.
,
2015
, “
Investigation the Effects of Injection Pressure and Compressibility and Nozzle Entry in Diesel Injector Nozzle's Flow
,”
J. Appl. Comput. Mech.
,
1
(
2
), pp.
83
94
.
35.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow
, New Orleans, LA, May 27–June 1, pp.
1
12
.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
36.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.
37.
Prosperetti
,
A.
, and
Lezzi
,
A.
,
1986
, “
Bubble Dynamics in a Compressible Liquid
,”
J. Fluid Mech.
,
168
(
1
), pp.
457
478
.
38.
Hsiao
,
C.-T.
,
Chahine
,
G. L.
, and
Liu
,
H.-L.
,
2003
, “
Scaling Effect on Prediction of Cavitation Inception in a Line Vortex Flow
,”
ASME J. Fluids Eng.
,
125
(
1
), p.
53
.
39.
Mahdi
,
M.
,
Shams
,
M.
, and
Ebrahimi
,
R.
,
2010
, “
Effects of Heat Transfer on the Strength of Shock Waves Emitted Upon Spherical Bubble Collapse
,”
Int. J. Numer. Methods Heat Fluid Flow
,
20
(
4
), pp.
372
391
.
40.
Khojasteh-Manesh
,
M.
, and
Mahdi
,
M.
,
2018
, “
Numerical Investigation of the Effect of Bubble-Bubble Interaction on the Power of Propagated Pressure Waves
,”
J. Appl. Comput. Mech.
,
5
(
2
), pp.
181
191
.
41.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), p.
883
.
42.
Johnson
,
V. E.
, and
Hsieh
,
T.
,
1966
, “
The Influence of the Trajectories of Gas Nuclei on Cavitation Inception
,”
Sixth Symposium on Naval Hydrodynamics
, Washington, DC, pp.
163
179
.
43.
Haberman
,
W. L.
, and
Morton
,
R. K.
,
1953
, “
An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids
,” Navy Department The David W. Taylor Model Basin, Washington, DC, pp.
1
55
.
44.
Keller
,
J. B.
, and
Kolodner
,
I. I.
,
1956
, “
Damping of Underwater Explosion Bubble Oscillations
,”
J. Appl. Phys.
,
27
(
10
), pp.
1152
1161
.
45.
Som
,
S.
,
Street
,
W. T.
,
Longman
,
D. E.
,
Aggarwal
,
S. K.
,
El-Hannouny
,
E. M.
, and
Longman
,
D. E.
,
2010
, “
Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
42802
.
46.
Abdolmaleki
,
M.
,
Afshin
,
H.
, and
Farhanieh
,
B.
,
2019
, “
Performance Analysis of Elliptic-Profile Airfoil Cascade for Designing Reversible Axial Flow Fans
,”
AIAA J.
(epub).
47.
Flannigan
,
D. J.
,
Hopkins
,
S. D.
,
Camara
,
C. G.
,
Putterman
,
S. J.
, and
Suslick
,
K. S.
,
2006
, “
Measurement of Pressure and Density Inside a Single Sonoluminescing Bubble
,”
Phys. Rev. Lett.
,
96
(
20
), p.
204301
.
48.
Mahdi
,
M.
,
Ebrahimi
,
R.
, and
Shams
,
M.
,
2011
, “
Numerical Analysis of the Effects of Radiation Heat Transfer and Ionization Energy Loss on the Cavitation Bubble's Dynamics
,”
Phys. Lett. A
,
375
(
24
), pp.
2348
2361
.
49.
Knapp
,
R. T.
,
1955
, “
Recent Investigations of the Mechanics of Cavitation and Cavitation Damage
,”
Trans. ASME
,
77
, pp.
1045
1054
.
You do not currently have access to this content.