The dynamics of an actively controlled fluidic diverter with novel actuation method are presented. This bistable fluidic valve is based on the Coanda effect and is able to switch the main flow solely by means of acoustic excitation. The switching is explained through a combination of experiments and large eddy simulations (LES). The switching time and minimum energy required are characterized for a range of pressure ratios, acoustic excitation frequencies, and input powers. It is shown that the switching mechanism depends on the excitation of natural instabilities inside the free shear layer. An enhanced roll-up of vortices at the excitation frequency increases the rate of entrainment and results in a transverse pressure gradient sufficient to counteract the Coanda effect leading to jet detachment and switching.

References

1.
Koli
,
B.
,
Chew
,
J. W.
,
Hills
,
N. J.
, and
Scanlon
,
T.
,
2014
, “
CFD Investigation of a Fluidic Device for Modulation of Aero-Engine Cooling Air
,”
ASME
Paper No. GT2014-26221.
2.
Gregory
,
J.
, and
Tomac
,
M. N.
,
2013
, “
A Review of Fluidic Oscillator Development
,”
AIAA
Paper No. 2013-2474.
3.
Cattafesta
,
L. N.
, III.
, and
Sheplak
,
M.
,
2011
, “
Actuators for Active Flow Control
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
247
272
.
4.
Parekh
,
D.
,
Kibens
,
V.
,
Glezer
,
A.
,
Wiltse
,
J.
, and
Smith
,
D.
,
1996
, “
Innovative Jet Flow Control-Mixing Enhancement Experiments
,”
34th Aerospace Sciences Meeting and Exhibit
,
AIAA
Paper No. 96-0308.
5.
Catarino
,
S.
,
Silva
,
L. R.
,
Mendes
,
P.
,
Miranda
,
J.
,
Lanceros-Mendez
,
S.
, and
Minas
,
G.
,
2014
, “
Piezoelectric Actuators for Acoustic Mixing in Microfluidic Devices-Numerical Prediction and Experimental Validation of Heat and Mass Transport
,”
Sens. Actuators B: Chem.
,
205
, pp.
206
214
.
6.
Samimy
,
M.
,
Kim
,
J.-H.
,
Kastner
,
J.
,
Adamovich
,
I.
, and
Utkin
,
Y.
,
2007
, “
Active Control of High-Speed and High-Reynolds-Number Jets Using Plasma Actuators
,”
J. Fluid Mech.
,
578
, pp.
305
330
.
7.
Samimy
,
M.
,
Kim
,
J.-H.
,
Kastner
,
J.
,
Adamovich
,
I.
, and
Utkin
,
Y.
,
2007
, “
Active Control of a Mach 0.9 Jet for Noise Mitigation Using Plasma Actuators
,”
AIAA J.
,
45
(
4
), pp.
890
901
.
8.
Metka
,
M.
, and
Gregory
,
J. W.
,
2015
, “
Drag Reduction on the 25-Deg Ahmed Model Using Fluidic Oscillators
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051108
.
9.
Woszidlo
,
R.
,
Stumper
,
T.
,
Nayeri
,
C.
, and
Paschereit
,
C. O.
,
2014
, “
Experimental Study on Bluff Body Drag Reduction With Fluidic Oscillators
,”
AIAA
Paper No. 2014-0403.
10.
Gilarranz
,
J.
,
Traub
,
L.
, and
Rediniotis
,
O.
,
2005
, “
A New Class of Synthetic Jet Actuators—Part II: Application to Flow Separation Control
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
377
387
.
11.
Cho
,
M.
,
Choi
,
S.
, and
Choi
,
H.
,
2016
, “
Control of Flow Separation in a Turbulent Boundary Layer Using Time-Periodic Forcing
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
101204
.
12.
Chapin
,
V.
, and
Bénard
,
E.
,
2015
, “
Active Control of a Stalled Airfoil Through Steady or Unsteady Actuation Jets
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
091103
.
13.
Lee
,
C.
,
Hong
,
G.
,
Ha
,
Q.
, and
Mallinson
,
S.
,
2003
, “
A Piezoelectrically Actuated Micro Synthetic Jet for Active Flow Control
,”
Sens. Actuators A: Phys.
,
108
(
1–3
), pp.
168
174
.
14.
You
,
D.
, and
Moin
,
P.
,
2008
, “
Active Control of Flow Separation Over an Airfoil Using Synthetic Jets
,”
J. Fluids Struct.
,
24
(
8
), pp.
1349
1357
.
15.
Grossman
,
K.
,
Bohdan
,
C.
, and
VanWie
,
D.
,
2003
, “
Sparkjet Actuators for Flow Control
,”
AIAA
Paper No. 2003-57.
16.
Gokoglu
,
S.
,
Kuczmarski
,
M.
,
Culley
,
D.
, and
Raghu
,
S.
,
2009
, “
Numerical Studies of a Fluidic Diverter for Flow Control
,”
AIAA
Paper No. 2009-4012.
17.
Tesař
,
V.
,
Zhong
,
S.
, and
Rasheed
,
F.
,
2012
, “
New Fluidic-Oscillator Concept for Flow-Separation Control
,”
AIAA J.
,
51
(
2
), pp.
397
405
.
18.
Sullerey
,
R.
, and
Pradeep
,
A.
,
2004
, “
Secondary Flow Control Using Vortex Generator Jets
,”
ASME J. Fluids Eng.
,
126
(
4
), pp.
650
657
.
19.
Lakebrink
,
M. T.
,
Mani
,
M.
, and
Winkler
,
C.
,
2017
, “
Numerical Investigation of Fluidic Oscillator Flow Control in an s-Duct Diffuser
,”
AIAA
Paper No. 2017-1455.
20.
Coleman
,
K.
, and
McGee
,
O.
, III
,
2013
, “
Aeromechanical Control of High-Speed Axial Compressor Stall and Engine Performance—Part II: Assessments of Methodology
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051102
.
21.
Staats
,
M.
, and
Nitsche
,
W.
,
2016
, “
Active Control of the Corner Separation on a highly loaded Compressor Cascade With Periodic Nonsteady Boundary Conditions by Means of Fluidic Actuators
,”
ASME J. Turbomach.
,
138
(
3
), p.
031004
.
22.
Bae
,
J.
,
Breuer
,
K. S.
, and
Tan
,
C. S.
,
2003
, “
Active Control of Tip Clearance Flow in Axial Compressors
,”
ASME
Paper No. GT2003-38661.
23.
Foster
,
K.
, and
Parker
,
G. A.
,
1970
,
Fluidics: Components and Circuits
,
Wiley
,
Ann Arbor, MI
.
24.
Ries
,
J. P.
,
1972
,
Dynamic Modeling of the Bistable Fluid Amplifier. Tech. rep
,
Lehigh University
,
Bethlehem, PA
.
25.
Joyce
,
J. W.
,
1983
,
Fluidics: Basic Components and Applications. Tech. rep
,
Harry Doamond Labs
,
Adelphi, MD
.
26.
Koklu
,
M.
, and
Owens
,
L. R.
,
2017
, “
Comparison of Sweeping Jet Actuators With Different Flow-Control Techniques for Flow-Separation Control
,”
AIAA J.
,
55
(
3
), pp.
848
860
.
27.
Aram
,
S.
,
Lee
,
Y.-T.
,
Shan
,
H.
, and
Vargas
,
A.
,
2018
, “
Computational Fluid Dynamic Analysis of Fluidic Actuator for Active Flow Control Applications
,”
AIAA J.
,
56
(1), pp. 111–120.
28.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
Phase-Averaging Methods for the Natural Flow field of a Fluidic Oscillator
,”
AIAA J.
,
53
(
8
), pp.
2359
2368
.
29.
Lin
,
J. C.
,
Andino
,
M. Y.
,
Alexander
,
M. G.
,
Whalen
,
E. A.
,
Spoor
,
M. A.
,
Tran
,
J. T.
, and
Wygnanski
,
I. J.
,
2016
, “
An Overview of Active Flow Control Enhanced Vertical Tail Technology Development
,”
AIAA
Paper No. 2016-0056.
30.
Gregory
,
J. W.
,
Gnanamanickam
,
E. P.
,
Sullivan
,
J. P.
, and
Raghu
,
S.
,
2009
, “
Variable-Frequency Fluidic Oscillator Driven by a Piezoelectric Bender
,”
AIAA J.
,
47
(
11
), pp.
2717
2725
.
31.
Gregory
,
J.
,
Ruotolo
,
J.
,
Byerley
,
A.
, and
McLaughlin
,
T.
,
2007
, “
Switching Behavior of a Plasma-Fluidic Actuator
,”
AIAA
Paper No. 2007-785.
32.
Tesař
,
V.
, and
Šonskè
,
J.
,
2015
, “
No-Moving-Part Electro/Fluidic Transducer Based on Plasma Discharge Effect
,”
Sens. Actuators A: Phys.
,
232
, pp.
20
29
.
33.
Martin
,
N. D.
,
Bottomley
,
M.
, and
Packwood
,
A.
,
2014
, “
Switching of a Bistable Diverter Valve With Synthetic Jet Actuators
,”
AIAA J.
,
52
(
7
), pp.
1563
1568
.
34.
Chen
,
L.-W.
,
Turner
,
J.
,
Bacic
,
M.
, and
Ireland
,
P.
,
2016
, “
Experimental and Numerical Studies of a Plasma Fluidic Device for Active Flow Control
,”
AIAA
Paper No. 2016-4235.
35.
Tippetts
,
J.
, and
Royle
,
J.
,
1971
, “
Design of Flow Control Circuits Involving Unvented Bistable Amplifiers (flow Control Circuits Design Based on Unvented Bistable Fluid Amplifiers)
,”
Fluid. Q.
,
3
, pp.
1
15
.
36.
Mair
,
M.
,
Chen
,
L.-W.
,
Turner
,
J.
,
Bacic
,
M.
, and
Ireland
,
P.
,
2016
, “
Experimental and Numerical Analysis of a Piezo Driven Fluidic Device for Active Flow Control
,”
AIAA
Paper No. AIAA 2016-4860.
37.
Michalke
,
A.
,
1965
, “
On Spatially Growing Disturbances in an Inviscid Shear Layer
,”
J. Fluid Mech.
,
23
(
3
), pp.
521
544
.
38.
Michalke
,
A.
,
1977
, “
Instability of a Compressible Circular Free Jet With Consideration of the Influence of the Jet Boundary Layer Thickness
,” NASA, Washington, DC, Report No.
NASA-TM-75190
.https://ntrs.nasa.gov/search.jsp?R=19780008055
39.
Zaman
,
K.
, and
Hussain
,
A.
,
1980
, “
Vortex Pairing in a Circular Jet Under Controlled Excitation—Part 1: General Jet Response
,”
J. Fluid Mech.
,
101
(
3
), pp.
449
491
.
40.
Menter
,
F.
,
1993
, “
Zonal Two Equation kw Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. AIAA-93-2906.
41.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
42.
Kolmogorov
,
A. N.
,
1941
, “
Dissipation of Energy in Locally Isotropic Turbulence
,”
Dokl. Akad. Nauk SSSR
,
32
, pp.
16
18
.
43.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
44.
Macovei
,
A. C.
, and
Frunzulica
,
F.
,
2014
, “
Numerical Simulations of Synthetic Jets in Aerodynamic Applications
,”
Incas Bull.
,
6
(1), pp.
81
93
.https://core.ac.uk/download/pdf/25706816.pdf
45.
Wygnanski
,
I.
, and
Fiedler
,
H.
,
1969
, “
Some Measurements in the Self-Preserving Jet
,”
J. Fluid Mech.
,
38
(
3
), pp.
577
612
.
46.
Crow
,
S. C.
, and
Champagne
,
F.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.
47.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
.
48.
Balarac
,
G.
,
Métais
,
O.
, and
Lesieur
,
M.
,
2007
, “
Mixing Enhancement in Coaxial Jets Through Inflow Forcing: A Numerical Study
,”
Phys. Fluids
,
19
(
7
), p.
075102
.
49.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.
50.
Wiltse
,
J. M.
, and
Glezer
,
A.
,
1993
, “
Manipulation of Free Shear Flows Using Piezoelectric Actuators
,”
J. Fluid Mech.
,
249
(
1
), pp.
261
285
.
51.
Ho
,
C.-M.
, and
Huerre
,
P.
,
1984
, “
Perturbed Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
16
(
1
), pp.
365
422
.
You do not currently have access to this content.