For vibro-acoustic applications, a turbulent wall pressure (TWP) fluctuations model was derived. The model is based on the resolution of Poisson's equation. The pressure is characterized in time and space through its spectrum in the frequency wave-number domain. The developed model follows trends commonly observed using Corcos model in a large frequency range but also shows new behaviors for low and high frequencies. The radiated noise due to TWP fluctuations is then computed in accordance with the form of the TWP spectrum. A specific computational methodology is proposed to perform the calculation without introducing limiting hypothesis on the radiated impedance.

References

1.
Panton
,
R. L.
, and
Linebarger
,
J. H.
,
1974
, “
Wall Pressure Spectra Calculations for Equilibrium Boundary Layers
,”
J. Fluid Mech.
,
65
(
2
), pp.
261
287
.
2.
Blake
,
W. K.
,
1986
,
Mechanics of Flow-Induced Sound and Vibration: Complex Flow-Structure Interactions
(Applied Mathematics and Mechanics Series),
Academic Press
, London.
3.
Bradshaw
,
P.
,
1967
, “
Inactive Motion and Pressure Fluctuations in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
(
2
), pp.
241
258
.
4.
Keith
,
W. L.
,
Hurdis
,
D.
, and
Abraham
,
B.
,
1992
, “
A Comparison of Turbulent Boundary Layer Wall-Pressure Spectra
,”
ASME J. Fluids Eng.
,
114
(
3
), pp.
338
347
.
5.
Farabee
,
T. M.
, and
Casarella
,
M. J.
,
1991
, “
Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
10
), pp.
2410
2420
.
6.
McGrath
,
B. E.
, and
Simpson
,
R. L.
,
1987
, “
Some Features of Surface Pressure Fluctuations in Turbulent Boundary Layers With Zero and Favorable Pressure Gradients
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-CR-4051
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19870008970.pdf
7.
Blake
,
W. K.
,
1970
, “
Turbulent Boundary-Layer Wall-Pressure Fluctuations on Smooth and Rough Walls
,”
J. Fluid Mech.
,
44
(
4
), pp.
637
660
.
8.
Goody
,
M. C.
, and
Simpson
,
R. L.
,
2000
, “
Surface Pressure Fluctuations beneath Two- and Three-Dimensional Turbulent Boundary Layers
,”
AIAA J.
,
38
(
10
), pp.
1822
1831
.
9.
Efimtsov
,
B. M.
,
1982
, “
Characteristics of the Field of Turbulent Wall Pressure-Fluctuations at Large Reynolds-Numbers
,”
Soviet Phys. Acoust.-USSR
,
28
(
4
), pp.
289
292
.
10.
Efimtsov
,
B. M.
,
1984
, “
Similarity Criteria for the Spectra of Wall Pressure Fluctuations in a Turbulent Boundary Layer
,”
Akusticheskii Zh.
,
30
, pp.
58
61
.
11.
Goody
,
M.
,
2004
, “
Empirical Spectral Model of Surface Pressure Fluctuations
,”
AIAA J.
,
42
(
9
), pp.
1788
1794
.
12.
Catlett
,
M.
,
Forest
,
J.
,
Anderson
,
J. A.
, and
Stewart
,
D.
,
2014
, “
Empirical Spectral Model of Surface Pressure Fluctuations Beneath Adverse Pressure Gradients
,”
AIAA
Paper No. 2014-2910.
13.
Rozenberg
,
Y.
,
Robert
,
G.
, and
Moreau
,
S.
,
2012
, “
Wall-Pressure Spectral Model Including the Adverse Pressure Gradient Effects
,”
AIAA J.
,
50
(
10
), pp.
2168
2179
.
14.
Hu
,
N.
, and
Herr
,
M.
,
2016
, “
Characteristics of Wall Pressure Fluctuations for a Flat Plate Turbulent Boundary Layer With Pressure Gradients
,”
AIAA
Paper No. 2016-2749.
15.
Hu
,
N.
,
2017
, “
Empirical Spectral Model of Wall Pressure Fluctuations Including Adverse Pressure Gradient Effects
,”
AIAA
Paper No. 2017-3203.
16.
Kamruzzaman
,
M.
,
Bekiropoulos
,
D.
,
Lutz
,
T.
,
Würz
,
W.
, and
Krämer
,
E.
,
2015
, “
A Semi-Empirical Surface Pressure Spectrum Model for Airfoil Trailing-Edge Noise Prediction
,”
Int. J. Aeroacoust.
,
14
(
5–6
), pp.
833
882
.
17.
Hwang
,
Y.
,
Bonness
,
W. K.
, and
Hambric
,
S. A.
,
2009
, “
Comparison of Semi-Empirical Models for Turbulent Boundary Layer Wall Pressure Spectra
,”
J. Sound Vib.
,
319
(
1–2
), pp.
199
217
.
18.
Lee
,
S.
,
2018
, “
Empirical Wall-Pressure Spectral Modeling for Zero and Adverse Pressure Gradient Flows
,”
AIAA J.
,
56
(5), pp.
1818
1829
.
19.
Corcos
,
G. M.
,
1963
, “
Resolution of Pressure in Turbulence
,”
J. Acoust. Soc. Am.
,
35
(
2
), pp.
192
199
.
20.
Corcos
,
G. M.
,
1964
, “
The Structure of the Turbulent Pressure Field in Boundary-Layer Flows
,”
J. Fluid Mech.
,
18
(
3
), pp.
353
378
.
21.
Kraichnan
,
R. H.
,
1956
, “
Pressure Fluctuations in Turbulent Flow Over a Flat Plate
,”
J. Acoust. Soc. Am.
,
28
(
3
), pp.
378
390
.
22.
Lee
,
Y.-T.
,
Blake
,
W. K.
, and
Farabee
,
T. M.
,
2005
, “
Modeling of Wall Pressure Fluctuations Based on Time Mean Flow Field
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
233
240
.
23.
Lee
,
Y.-T.
,
Farabee
,
T. M.
, and
Blake
,
W. K.
,
2009
, “
Turbulence Effects of Wall-Pressure Fluctuations for Reattached Flow
,”
Comput. Fluids
,
38
(
5
), pp.
1033
1041
.
24.
Remmler
,
S.
,
Christophe
,
J.
,
Anthoine
,
J.
, and
Moreau
,
S.
,
2010
, “
Computation of Wall Pressure Spectra From Steady Flow Data for Noise Prediction
,”
AIAA J.
,
48
(
9
), pp.
1997
2007
.
25.
Parchen
,
R. R.
,
1998
,
Progress Report DRAW: A Prediction Scheme for Trailing Edge Noise Based on Detailed Boundary Layer Characteristics
,
TNO Institute of Applied Physics
, Delft, The Netherlands.
26.
Bertagnolio
,
F.
,
Aagaard Madsen
,
H.
, and
Bak
,
C.
,
2009
, “
Experimental Validation of TNO Trailing Edge Noise Model and Application to Airfoil Optimization
,”
European Wind Energy Conference and Exhibition
,
Marseille, France
,
Mar. 16–19
.
27.
Bertagnolio
,
F.
,
Fischer
,
A.
, and
Zhu
,
W. J.
,
2014
, “
Tuning of Turbulent Boundary Layer Anisotropy for Improved Surface Pressure and Trailing-Edge Noise Modeling
,”
J. Sound Vib.
,
333
(
3
), pp.
991
1010
.
28.
Peltier
,
L. J.
, and
Hambric
,
S. A.
,
2007
, “
Estimating Turbulent-Boundary-Layer Wall-Pressure Spectra From CFD RANS Solutions
,”
J. Fluids Struct.
,
23
(
6
), pp.
920
937
.
29.
Slama
,
M.
,
Leblond
,
C.
, and
Sagaut
,
P.
,
2018
, “
A Kriging-Based Elliptic Extended Anisotropic Model for the Turbulent Boundary Layer Wall Pressure Spectrum
,”
J. Fluid Mech.
,
840
, pp.
25
55
.
30.
Lysak
,
P. D.
,
2006
, “
Modeling the Wall Pressure Spectrum in Turbulent Pipe Flows
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
216
222
.
31.
Aupoix
,
B.
,
2015
, “
Extension of Lysak's Approach to Evaluate the Wall Pressure Spectrum for Boundary Layer Flows
,”
Flow, Turbul. Combust.
,
94
(
1
), pp.
63
78
.
32.
Maury
,
C.
,
Gardonio
,
P.
, and
Elliott
,
S. J.
,
2002
, “
A Wavenumber Approach to Modelling the Response of a Randomly Excited Panel—Part II: Application to Aircraft Panels Excited by a Turbulent Boundary Layer
,”
J. Sound Vib.
,
252
(
1
), pp.
115
139
.
33.
Graham
,
W. R.
,
1996
, “
Boundary Layer Induced Noise in Aircraft—Part I: The Flat Plate Model
,”
J. Sound Vib.
,
192
(
1
), pp.
101
120
.
34.
Graham
,
W. R.
,
1996
, “
Boundary Layer Induced Noise in Aircraft—Part II: The Trimmed Flat Plate Model
,”
J. Sound Vib.
,
192
(
1
), pp.
121
138
.
35.
Borisyuk
,
A. O.
, and
Grinchenko
,
V. T.
,
1997
, “
Vibration and Noise Generation by Elastic Elements Excited by a Turbulent Flow
,”
J. Sound Vib.
,
204
(
2
), pp.
213
237
.
36.
Mazzoni
,
D.
,
2003
, “
An Efficient Approximation for the Vibro-Acoustic Response of a Turbulent Boundary Layer Excited Panel
,”
J. Sound Vib.
,
264
(
4
), pp.
951
971
.
37.
Davies
,
H. G.
,
1971
, “
Sound From Turbulent-Boundary-Layer-Excited Panels
,”
J. Acoust. Soc. Am.
,
49
(
3B
), pp.
878
889
.
38.
Hwang
,
Y. F.
, and
Maidanik
,
G.
,
1990
, “
A Wavenumber Analysis of the Coupling of a Structural Mode and Flow Turbulence
,”
J. Sound Vib.
,
142
(
1
), pp.
135
152
.
39.
Maury
,
C.
,
Gardonio
,
P.
, and
Elliott
,
S. J.
,
2002
, “
A Wavenumber Approach to Modelling the Response of a Randomly Excited Panel—Part I: General Theory
,”
J. Sound Vib.
,
252
(
1
), pp.
83
113
.
40.
Lysak
,
P. D.
, and
Brungart
,
T. A.
,
2003
, “
Velocity Spectrum Model for Turbulence Ingestion Noise From Computational-Fluid-Dynamics Calculations
,”
AIAA J.
,
41
(
9
), pp.
1827
1829
.
41.
Tam
,
C. K.
, and
Auriault
,
L.
,
1999
, “
Jet Mixing Noise From Fine-Scale Turbulence
,”
AIAA J.
,
37
(
2
), pp.
145
153
.
42.
Ewert
,
R.
,
2008
, “
Broadband Slat Noise Prediction Based on Caa and Stochastic Sound Sources From a Fast Random Particle-Mesh (RPM) Method
,”
Comput. Fluids
,
37
(
4
), pp.
369
387
.
43.
Ewert
,
R.
,
Dierke
,
J.
,
Siebert
,
J.
,
Neifeld
,
A.
,
Appel
,
C.
,
Siefert
,
M.
, and
Kornow
,
O.
,
2011
, “
CAA Broadband Noise Prediction for Aeroacoustic Design
,”
J. Sound Vib.
,
330
(
17
), pp.
4139
4160
.
44.
Hu
,
N.
,
Appel
,
C.
,
Herr
,
M.
,
Ewert
,
R.
, and
Reiche
,
N.
,
2016
, “
Numerical Study of Wall Pressure Fluctuations for Zero and Non-Zero Pressure Gradient Turbulent Boundary Layers
,”
AIAA
Paper No. 2016-2911.
45.
Gravante
,
S. P.
,
Naguib
,
A. M.
,
Wark
,
C. E.
, and
Nagib
,
H. M.
,
1998
, “
Characterization of the Pressure Fluctuations Under a Fully Developed Turbulent Boundary Layer
,”
AIAA J.
,
36
(
10
), pp.
1808
1816
.
46.
Tsuji
,
Y.
,
Imayama
,
S.
,
Schlatter
,
P.
,
Alfredsson
,
P. H.
,
Johansson
,
A. V.
,
Marusic
,
I.
,
Hutchins
,
N.
, and
Monty
,
J.
,
2012
, “
Pressure Fluctuation in High-Reynolds-Number Turbulent Boundary Layer: Results From Experiments and DNS
,”
J. Turbul.
,
13
, p.
N50
.
47.
Howe
,
M.
,
1992
, “
A Note on the Kraichnan Phillips Theorem
,”
J. Fluid Mech.
,
234
(
1
), pp.
443
448
.
48.
Howe
,
M. S.
,
1998
,
Acoustics of Fluid-Structure Interactions
,
Cambridge University Press
,
Cambridge, UK
.
49.
Shampine
,
L. F.
,
2008
, “
Vectorized Adaptive Quadrature in Matlab
,”
J. Comput. Appl. Math.
,
211
(
2
), pp.
131
140
.
You do not currently have access to this content.