For vibro-acoustic applications, a turbulent wall pressure (TWP) fluctuations model was derived. The model is based on the resolution of Poisson's equation. The pressure is characterized in time and space through its spectrum in the frequency wave-number domain. The developed model follows trends commonly observed using Corcos model in a large frequency range but also shows new behaviors for low and high frequencies. The radiated noise due to TWP fluctuations is then computed in accordance with the form of the TWP spectrum. A specific computational methodology is proposed to perform the calculation without introducing limiting hypothesis on the radiated impedance.
References
1.
Panton
, R. L.
, and Linebarger
, J. H.
, 1974
, “Wall Pressure Spectra Calculations for Equilibrium Boundary Layers
,” J. Fluid Mech.
, 65
(2
), pp. 261
–287
.2.
Blake
, W. K.
, 1986
, Mechanics of Flow-Induced Sound and Vibration: Complex Flow-Structure Interactions
(Applied Mathematics and Mechanics Series), Academic Press
, London.3.
Bradshaw
, P.
, 1967
, “Inactive Motion and Pressure Fluctuations in Turbulent Boundary Layers
,” J. Fluid Mech.
, 30
(2
), pp. 241
–258
.4.
Keith
, W. L.
, Hurdis
, D.
, and Abraham
, B.
, 1992
, “A Comparison of Turbulent Boundary Layer Wall-Pressure Spectra
,” ASME J. Fluids Eng.
, 114
(3
), pp. 338
–347
.5.
Farabee
, T. M.
, and Casarella
, M. J.
, 1991
, “Spectral Features of Wall Pressure Fluctuations Beneath Turbulent Boundary Layers
,” Phys. Fluids A: Fluid Dyn.
, 3
(10
), pp. 2410
–2420
.6.
McGrath
, B. E.
, and Simpson
, R. L.
, 1987
, “Some Features of Surface Pressure Fluctuations in Turbulent Boundary Layers With Zero and Favorable Pressure Gradients
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA-CR-4051
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19870008970.pdf7.
Blake
, W. K.
, 1970
, “Turbulent Boundary-Layer Wall-Pressure Fluctuations on Smooth and Rough Walls
,” J. Fluid Mech.
, 44
(4
), pp. 637
–660
.8.
Goody
, M. C.
, and Simpson
, R. L.
, 2000
, “Surface Pressure Fluctuations beneath Two- and Three-Dimensional Turbulent Boundary Layers
,” AIAA J.
, 38
(10
), pp. 1822
–1831
.9.
Efimtsov
, B. M.
, 1982
, “Characteristics of the Field of Turbulent Wall Pressure-Fluctuations at Large Reynolds-Numbers
,” Soviet Phys. Acoust.-USSR
, 28
(4
), pp. 289
–292
.10.
Efimtsov
, B. M.
, 1984
, “Similarity Criteria for the Spectra of Wall Pressure Fluctuations in a Turbulent Boundary Layer
,” Akusticheskii Zh.
, 30
, pp. 58
–61
.11.
Goody
, M.
, 2004
, “Empirical Spectral Model of Surface Pressure Fluctuations
,” AIAA J.
, 42
(9
), pp. 1788
–1794
.12.
Catlett
, M.
, Forest
, J.
, Anderson
, J. A.
, and Stewart
, D.
, 2014
, “Empirical Spectral Model of Surface Pressure Fluctuations Beneath Adverse Pressure Gradients
,” AIAA
Paper No. 2014-2910.13.
Rozenberg
, Y.
, Robert
, G.
, and Moreau
, S.
, 2012
, “Wall-Pressure Spectral Model Including the Adverse Pressure Gradient Effects
,” AIAA J.
, 50
(10
), pp. 2168
–2179
.14.
Hu
, N.
, and Herr
, M.
, 2016
, “Characteristics of Wall Pressure Fluctuations for a Flat Plate Turbulent Boundary Layer With Pressure Gradients
,” AIAA
Paper No. 2016-2749.15.
Hu
, N.
, 2017
, “Empirical Spectral Model of Wall Pressure Fluctuations Including Adverse Pressure Gradient Effects
,” AIAA
Paper No. 2017-3203.16.
Kamruzzaman
, M.
, Bekiropoulos
, D.
, Lutz
, T.
, Würz
, W.
, and Krämer
, E.
, 2015
, “A Semi-Empirical Surface Pressure Spectrum Model for Airfoil Trailing-Edge Noise Prediction
,” Int. J. Aeroacoust.
, 14
(5–6
), pp. 833
–882
.17.
Hwang
, Y.
, Bonness
, W. K.
, and Hambric
, S. A.
, 2009
, “Comparison of Semi-Empirical Models for Turbulent Boundary Layer Wall Pressure Spectra
,” J. Sound Vib.
, 319
(1–2
), pp. 199
–217
.18.
Lee
, S.
, 2018
, “Empirical Wall-Pressure Spectral Modeling for Zero and Adverse Pressure Gradient Flows
,” AIAA J.
, 56
(5), pp. 1818
–1829
.19.
Corcos
, G. M.
, 1963
, “Resolution of Pressure in Turbulence
,” J. Acoust. Soc. Am.
, 35
(2
), pp. 192
–199
.20.
Corcos
, G. M.
, 1964
, “The Structure of the Turbulent Pressure Field in Boundary-Layer Flows
,” J. Fluid Mech.
, 18
(3
), pp. 353
–378
.21.
Kraichnan
, R. H.
, 1956
, “Pressure Fluctuations in Turbulent Flow Over a Flat Plate
,” J. Acoust. Soc. Am.
, 28
(3
), pp. 378
–390
.22.
Lee
, Y.-T.
, Blake
, W. K.
, and Farabee
, T. M.
, 2005
, “Modeling of Wall Pressure Fluctuations Based on Time Mean Flow Field
,” ASME J. Fluids Eng.
, 127
(2
), pp. 233
–240
.23.
Lee
, Y.-T.
, Farabee
, T. M.
, and Blake
, W. K.
, 2009
, “Turbulence Effects of Wall-Pressure Fluctuations for Reattached Flow
,” Comput. Fluids
, 38
(5
), pp. 1033
–1041
.24.
Remmler
, S.
, Christophe
, J.
, Anthoine
, J.
, and Moreau
, S.
, 2010
, “Computation of Wall Pressure Spectra From Steady Flow Data for Noise Prediction
,” AIAA J.
, 48
(9
), pp. 1997
–2007
.25.
Parchen
, R. R.
, 1998
, Progress Report DRAW: A Prediction Scheme for Trailing Edge Noise Based on Detailed Boundary Layer Characteristics
, TNO Institute of Applied Physics
, Delft, The Netherlands.26.
Bertagnolio
, F.
, Aagaard Madsen
, H.
, and Bak
, C.
, 2009
, “Experimental Validation of TNO Trailing Edge Noise Model and Application to Airfoil Optimization
,” European Wind Energy Conference and Exhibition
, Marseille, France
, Mar. 16–19
.27.
Bertagnolio
, F.
, Fischer
, A.
, and Zhu
, W. J.
, 2014
, “Tuning of Turbulent Boundary Layer Anisotropy for Improved Surface Pressure and Trailing-Edge Noise Modeling
,” J. Sound Vib.
, 333
(3
), pp. 991
–1010
.28.
Peltier
, L. J.
, and Hambric
, S. A.
, 2007
, “Estimating Turbulent-Boundary-Layer Wall-Pressure Spectra From CFD RANS Solutions
,” J. Fluids Struct.
, 23
(6
), pp. 920
–937
.29.
Slama
, M.
, Leblond
, C.
, and Sagaut
, P.
, 2018
, “A Kriging-Based Elliptic Extended Anisotropic Model for the Turbulent Boundary Layer Wall Pressure Spectrum
,” J. Fluid Mech.
, 840
, pp. 25
–55
.30.
Lysak
, P. D.
, 2006
, “Modeling the Wall Pressure Spectrum in Turbulent Pipe Flows
,” ASME J. Fluids Eng.
, 128
(2
), pp. 216
–222
.31.
Aupoix
, B.
, 2015
, “Extension of Lysak's Approach to Evaluate the Wall Pressure Spectrum for Boundary Layer Flows
,” Flow, Turbul. Combust.
, 94
(1
), pp. 63
–78
.32.
Maury
, C.
, Gardonio
, P.
, and Elliott
, S. J.
, 2002
, “A Wavenumber Approach to Modelling the Response of a Randomly Excited Panel—Part II: Application to Aircraft Panels Excited by a Turbulent Boundary Layer
,” J. Sound Vib.
, 252
(1
), pp. 115
–139
.33.
Graham
, W. R.
, 1996
, “Boundary Layer Induced Noise in Aircraft—Part I: The Flat Plate Model
,” J. Sound Vib.
, 192
(1
), pp. 101
–120
.34.
Graham
, W. R.
, 1996
, “Boundary Layer Induced Noise in Aircraft—Part II: The Trimmed Flat Plate Model
,” J. Sound Vib.
, 192
(1
), pp. 121
–138
.35.
Borisyuk
, A. O.
, and Grinchenko
, V. T.
, 1997
, “Vibration and Noise Generation by Elastic Elements Excited by a Turbulent Flow
,” J. Sound Vib.
, 204
(2
), pp. 213
–237
.36.
Mazzoni
, D.
, 2003
, “An Efficient Approximation for the Vibro-Acoustic Response of a Turbulent Boundary Layer Excited Panel
,” J. Sound Vib.
, 264
(4
), pp. 951
–971
.37.
Davies
, H. G.
, 1971
, “Sound From Turbulent-Boundary-Layer-Excited Panels
,” J. Acoust. Soc. Am.
, 49
(3B
), pp. 878
–889
.38.
Hwang
, Y. F.
, and Maidanik
, G.
, 1990
, “A Wavenumber Analysis of the Coupling of a Structural Mode and Flow Turbulence
,” J. Sound Vib.
, 142
(1
), pp. 135
–152
.39.
Maury
, C.
, Gardonio
, P.
, and Elliott
, S. J.
, 2002
, “A Wavenumber Approach to Modelling the Response of a Randomly Excited Panel—Part I: General Theory
,” J. Sound Vib.
, 252
(1
), pp. 83
–113
.40.
Lysak
, P. D.
, and Brungart
, T. A.
, 2003
, “Velocity Spectrum Model for Turbulence Ingestion Noise From Computational-Fluid-Dynamics Calculations
,” AIAA J.
, 41
(9
), pp. 1827
–1829
.41.
Tam
, C. K.
, and Auriault
, L.
, 1999
, “Jet Mixing Noise From Fine-Scale Turbulence
,” AIAA J.
, 37
(2
), pp. 145
–153
.42.
Ewert
, R.
, 2008
, “Broadband Slat Noise Prediction Based on Caa and Stochastic Sound Sources From a Fast Random Particle-Mesh (RPM) Method
,” Comput. Fluids
, 37
(4
), pp. 369
–387
.43.
Ewert
, R.
, Dierke
, J.
, Siebert
, J.
, Neifeld
, A.
, Appel
, C.
, Siefert
, M.
, and Kornow
, O.
, 2011
, “CAA Broadband Noise Prediction for Aeroacoustic Design
,” J. Sound Vib.
, 330
(17
), pp. 4139
–4160
.44.
Hu
, N.
, Appel
, C.
, Herr
, M.
, Ewert
, R.
, and Reiche
, N.
, 2016
, “Numerical Study of Wall Pressure Fluctuations for Zero and Non-Zero Pressure Gradient Turbulent Boundary Layers
,” AIAA
Paper No. 2016-2911.45.
Gravante
, S. P.
, Naguib
, A. M.
, Wark
, C. E.
, and Nagib
, H. M.
, 1998
, “Characterization of the Pressure Fluctuations Under a Fully Developed Turbulent Boundary Layer
,” AIAA J.
, 36
(10
), pp. 1808
–1816
.46.
Tsuji
, Y.
, Imayama
, S.
, Schlatter
, P.
, Alfredsson
, P. H.
, Johansson
, A. V.
, Marusic
, I.
, Hutchins
, N.
, and Monty
, J.
, 2012
, “Pressure Fluctuation in High-Reynolds-Number Turbulent Boundary Layer: Results From Experiments and DNS
,” J. Turbul.
, 13
, p. N50
.47.
Howe
, M.
, 1992
, “A Note on the Kraichnan Phillips Theorem
,” J. Fluid Mech.
, 234
(1
), pp. 443
–448
.48.
Howe
, M. S.
, 1998
, Acoustics of Fluid-Structure Interactions
, Cambridge University Press
, Cambridge, UK
.49.
Shampine
, L. F.
, 2008
, “Vectorized Adaptive Quadrature in Matlab
,” J. Comput. Appl. Math.
, 211
(2
), pp. 131
–140
.Copyright © 2019 by ASME
You do not currently have access to this content.