Transitional cavity shedding is known as the stage of attached cavitation with high instability and distinct periodicity. In this study, we experimentally investigated the dynamic characteristics of transitional cavity (0.8L/c<1) shedding on NACA0015 hydrofoil with high-speed video observation and synchronous pressure measurement. In the partial cavity (0.4<L/c<0.8) oscillation, the sheet cavitation grew along the chord with good spanwise uniformity, and the middle-entrant jet played a dominant role in cavity shedding. Meanwhile, in the transitional cavity oscillation, the previous shedding cavity exhibited a prohibitive effect on the growth of sheet cavitation on the hydrofoil, resulting in concave cavity closure line. Moreover, two symmetrical side-entrant jets originated at the near-wall ends and induced the two-stage shedding phenomenon. The aft and fore parts of the sheet cavitation shed separated as different forms and eventually merged into the large-scale cloud cavity.

References

1.
Wade
,
R.
, and
Acosta
,
A.
,
1966
, “
Experimental Observations on the Flow past a Plano-Convex Hydrofoil
,”
ASME J. Basic Eng.
,
88
(
1
), pp.
273
282
.
2.
Arndt
,
R. E.
,
Song
,
C.
,
Kjeldsen
,
M.
,
He
,
J.
, and
Keller
,
A.
,
2000
, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
23rd Symposium on Naval Hydrodynamics
, Val de Reuil, France.https://conservancy.umn.edu/handle/11299/49781
3.
Sato
,
K.
,
Tanada
,
M.
,
Monden
,
S.
, and
Tsujimoto
,
Y.
,
2002
, “
Observations of Oscillating Cavitation on a Flat Plate Hydrofoil
,”
JSME Int. J., Ser. B
,
45
(
3
), pp.
646
654
.
4.
Tsujimoto
,
Y.
,
Watanabe
,
S.
, and
Horiguchi
,
H.
,
2008
, “
Cavitation Instabilities of Hydrofoils and Cascades
,”
Int. J. Fluid Mach. Syst.
,
1
(
1
), pp.
38
46
.
5.
Watanabe
,
S.
,
Yamaoka
,
W.
, and
Furukawa
,
A.
,
2014
, “
Unsteady Lift and Drag Characteristics of Cavitating Clark Y-11.7% Hydrofoil
,”
IOP Conf. Series: Earth Environ. Sci.
,
22
(5), p.
052009
.
6.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1993
, “
Partial Cavities: Global Behavior and Mean Pressure Distribution
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
243
248
.
7.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
.
8.
Pham
,
T.
,
Larrarte
,
F.
, and
Fruman
,
D.
,
1999
, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
289
296
.
9.
Callenaere
,
M.
,
Franc
,
J.-P.
,
Michel
,
J.-M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
10.
Leroux
,
J.-B.
,
Astolfi
,
J. A.
, and
Billard
,
J. Y.
,
2004
, “
An Experimental Study of Unsteady Partial Cavitation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
94
101
.
11.
Leroux
,
J.-B.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2005
, “
A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil
,”
Phys. Fluids
,
17
(
5
), p.
052101
.
12.
Coutier-Delgosha
,
O.
,
Stutz
,
B.
,
Vabre
,
A.
, and
Legoupil
,
S.
,
2007
, “
Analysis of Cavitating Flow Structure by Experimental and Numerical Investigations
,”
J. Fluid Mech.
,
578
, pp.
171
222
.
13.
Iga
,
Y.
,
Hashizume
,
K.
, and
Yoshida
,
Y.
,
2011
, “
Numerical Analysis of Three Types of Cavitation Surge in Cascade
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071102
.
14.
Kobayashi
,
H.
,
Hagiwara
,
R.
,
Kawasaki
,
S.
,
Uchiumi
,
M.
,
Yada
,
K.
, and
Iga
,
Y.
,
2017
, “
Numerical Analysis of Suppression Effect of Asymmetric Slit on Cavitation Instabilities in Cascade
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021302
.
15.
Pelz
,
P.
,
Keil
,
T.
, and
Groß
,
T.
,
2017
, “
The Transition From Sheet to Cloud Cavitation
,”
J. Fluid Mech.
,
817
, pp.
439
454
.
16.
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Furukawa
,
A.
,
2001
, “
Theoretical Analysis of Transitional and Partial Cavity Instabilities
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
692
697
.
17.
Fujii
,
A.
,
Kawakami
,
D. T.
,
Tsujimoto
,
Y.
, and
Arndt
,
R. E.
,
2007
, “
Effect of Hydrofoil Shapes on Partial and Transitional Cavity Oscillations
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
669
673
.
18.
Song
,
C.
, and
Qin
,
Q.
,
2001
, “
Numerical Simulation of Unsteady Cavitation Flows
,”
Fourth International Symposium on Cavitation
(
CAV2001
), Pasadena, CA.http://caltechconf.library.caltech.edu/105/
19.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
,
2007
, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Modell.
,
31
(
3
), pp.
417
447
.
20.
Kawakami
,
D. T.
,
Fuji
,
A.
,
Tsujimoto
,
Y.
, and
Arndt
,
R.
,
2008
, “
An Assessment of the Influence of Environmental Factors on Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
031303
.
21.
Daido
,
H.
,
Watanabe
,
S.
, and
Tsuda
,
S.-I.
,
2015
, “
Effects of Dissolved Gas on Unsteady Cavitating Flow Around a Clark Y-11.7% Hydrofoil
,”
ASME
Paper No. AJKFluids2015-05488.
22.
Ganesh
,
H.
,
Mäkiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.
23.
Ganesh
,
H.
,
Mäkiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2015
, “
Interaction of a Compressible Bubbly Flow With an Obstacle Placed Within a Shedding Partial Cavity
,”
J. Phys.: Conf. Ser.
,
656
(1), p.
012151
.
24.
Ganesh
,
H.
,
2015
, “
Bubbly Shock Propagation as a Cause of Sheet to Cloud Transition of Partial Cavitation and Stationary Cavitation Bubbles Forming on a Delta Wing Vortex
,” Ph.D dissertation, Michigan University, Ann Arbor, MI.
25.
Mørch
,
K. A.
,
1980
, “
On the Collapse of Cavity Clusters in Flow Cavitation
,” Cavitation and Inhomogeneities in Underwater Acoustics (Springer Series in Electrophysics, Vol. 4), Springer, Berlin, pp.
95
100
.
26.
Mørch
,
K. A.
, 1981, “
Cavity Cluster Dynamics and Cavitation Erosion
,” Proceedings of the ASME Cavitation Polyphase Flow Forum, pp. 1–10.
27.
Mørch
,
K. A.
,
1982
, “
Energy Considerations on the Collapse of Cavity Clusters
,”
Appl. Sci. Res.
,
38
(
1
), pp.
313
321
.
28.
Hansson
,
I.
,
Kedrinskii
,
V.
, and
Mørch
,
K. A.
,
1982
, “
On the Dynamics of Cavity Clusters
,”
J. Phys. D: Appl. Phys.
,
15
(
9
), p.
1725
.
29.
Reisman
,
G.
, and
Brennen
,
C.
,
1996
, “
Pressure Pulses Generated by Cloud Cavitation
,” ASME Symposium on Cavitation and Gas-Liquid Flows in Fluid Machinery and Devices, San Diego, CA, FED Vol. 236, pp. 316–328.
30.
Reisman
,
G.
,
Wang
,
Y.-C.
, and
Brennen
,
C. E.
,
1998
, “
Observations of Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
,
355
, pp.
255
283
.
31.
Kjeldsen
,
M.
,
Arndt
,
R. E.
, and
Effertz
,
M.
,
2000
, “
Spectral Characteristics of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
481
487
.
32.
Dular
,
M.
, and
Bachert
,
R.
,
2009
, “
The Issue of Strouhal Number Definition in Cavitating Flow
,”
J. Mech. Eng.
,
55
(
11
), pp.
666
674
. https://www.sv-jme.eu/article/the-issue-of-strouhal-number-definition-in-cavitating-flow/
33.
George
,
D. L.
,
Iyer
,
C. O.
, and
Ceccio
,
S. L.
,
2000
, “
Measurement of the Bubbly Flow beneath Partial Attached Cavities Using Electrical Impedance Probes
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
151
155
.
34.
Foeth
,
E.-J.
,
van Terwisga
,
T.
, and
van Doorne
,
C.
,
2008
, “
On the Collapse Structure of an Attached Cavity on a Three-Dimensional Hydrofoil
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
071303
.
35.
De Lange
,
D.
, and
De Bruin
,
G.
,
1997
, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Appl. Sci. Res.
,
58
(
1
), pp.
91
114
.
36.
Dang
,
J.
, and
Kuiper
,
G.
,
1999
, “
Re-Entrant Jet Modeling of Partial Cavity Flow on Three-Dimensional Hydrofoils
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
781
787
.
37.
Laberteaux
,
K.
, and
Ceccio
,
S.
,
2001
, “
Partial Cavity Flows. Part 2. Cavities Forming on Test Objects With Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
43
63
.
38.
Kawanami
,
Y.
,
Kato
,
H.
, and
Yamaguchi
,
H.
, 1998, “
Three-Dimensional Characteristics of the Cavities Formed on a Two-Dimensional Hydrofoil
,”
Third International Symposium on Cavitation,
Grenoble, France, pp.
191
196
.
You do not currently have access to this content.