The maximum impingement plate skin friction and flow field is measured for an acoustically forced planar impinging gas jet using oil film interferometry (OFI) and particle image velocimetry (PIV), respectively. The study is performed at a jet Reynolds number of Rejet = 11,000 and an impingement distance H, which is set to eight times the nozzle width W. The planar impinging gas jet is forced at the jet nozzle exit using Strouhal numbers StH = 0.39, 0.76, and 1.1, which are similar to those associated with the jet-plate tones measured in air-knife wiping experiments. The flow-field measurements indicate that the jet column oscillates at the applied forcing frequency, and depending on the forcing frequency, organized vortex structures can be identified in the shear layers that impinge on the plate surface. Both of these jet oscillation features result in a reduction in the time-averaged maximum impingement plate skin friction. This skin friction reduction is attributed to momentum loss at the jet centerline caused by increased levels of fluid entrainment and mixing of the surrounding quiescent fluid.

References

1.
Arthurs
,
D.
, and
Ziada
,
S.
,
2012
, “
Self-Excited Oscillations of a High-Speed Impinging Planar Jet
,”
J. Fluids Struct.
,
34
, pp.
236
258
.
2.
Marsh
,
A. H.
,
1961
, “
Noise Measurements Around a Subsonic Air Jet Impinging on a Plane, Rigid Surface
,”
J. Acoust. Soc. Am.
,
33
(
8
), pp.
1065
1066
.
3.
Neuwerth
,
G.
,
1974
, “Acoustic Feedback Phenomena of a Subsonic and Hypersonic Free Jet Impinging on a Foreign Body,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA TT F-15719.
4.
Ho
,
C.-M.
, and
Nosseir
,
N. S.
,
1981
, “
Dynamics of an Impinging Jet—Part 1: The Feedback Phenomenon
,”
J. Fluid Mech.
,
105
(
1
), pp.
119
142
.
5.
Nosseir
,
N. S.
, and
Ho
,
C.-M.
,
1982
, “
Dynamics of an Impinging Jet—Part 2: The Noise Generation
,”
J. Fluid Mech.
,
116
(
1
), pp.
379
391
.
6.
Arthurs
,
D.
, and
Ziada
,
S.
,
2011
, “
The Planar Jet-Plate Oscillator
,”
J. Fluids Struct.
,
27
(
1
), pp.
105
120
.
7.
Arthurs
,
D.
, and
Ziada
,
S.
,
2014
, “
Effect of Nozzle Thickness on the Self-Excited Impinging Planar Jet
,”
J. Fluids Struct.
,
44
, pp.
1
16
.
8.
Arthurs
,
D.
,
Ziada
,
S.
, and
Goodwin
,
F.
,
2012
, “
Noise Generation by the Gas Wiping Jets of Continuous Galvanizing Lines
,”
J. Fluids Therm. Sci.
,
1
(
2
), pp. 85–129.
9.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1979
, “
Self-Sustained Oscillations of Impinging Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
11
(
1
), pp.
67
94
.
10.
Ho
,
C.-M.
, and
Huang
,
L.-S.
,
1982
, “
Subharmonics and Vortex Merging in Mixing Layers
,”
J. Fluid Mech.
,
119
(
1
), pp.
443
473
.
11.
Kopiev
,
V. F.
,
Zaitsev
,
M. Y.
,
Inshakov
,
S. I.
, and
Guriashkin
,
L. P.
,
2003
, “
Visualization of the Large-Scale Vortex Structures in Excited Turbulent Jets
,”
J. Visualization
,
6
(
3
), pp.
303
311
.
12.
Brown
,
G. B.
,
1935
, “
On Vortex Motion in Gaseous Jets and the Origin of Their Sensitivity to Sound
,”
Proc. Phys. Soc.
,
47
(
4
), p.
703
.
13.
Sato
,
H.
,
1960
, “
The Stability and Transition of a Two-Dimensional Jet
,”
J. Fluid Mech.
,
7
(
1
), pp.
53
80
.
14.
Michalke
,
A.
,
1964
, “
On the Inviscid Instability of the Hyperbolictangent Velocity Profile
,”
J. Fluid Mech.
,
19
(
4
), pp.
543
556
.
15.
Freymuth
,
P.
,
1966
, “
On Transition in a Separated Laminar Boundary Layer
,”
J. Fluid Mech.
,
25
(
4
), pp.
683
704
.
16.
Crow
,
S. C.
, and
Champagne
,
F.
,
1971
, “
Orderly Structure in Jet Turbulence
,”
J. Fluid Mech.
,
48
(
3
), pp.
547
591
.
17.
Hussain
,
A. F.
, and
Zaman
,
K.
,
1981
, “
The Preferred Mode of the Axisymmetric Jet
,”
J. Fluid Mech.
,
110
(
1
), pp.
39
71
.
18.
Hussain
,
A.
, and
Thompson
,
C.
,
1980
, “
Controlled Symmetric Perturbation of the Plane Jet: An Experimental Study in the Initial Region
,”
J. Fluid Mech.
,
100
(
2
), pp.
397
431
.
19.
Cohen
,
J.
, and
Wygnanski
,
I.
,
1987
, “
The Evolution of Instabilities in the Axisymmetric Jet—Part 1: The Linear Growth of Disturbances Near the Nozzle
,”
J. Fluid Mech.
,
176
(
1
), pp.
191
219
.
20.
Raman
,
G.
,
Zaman
,
K. B.
, and
Rice
,
E. J.
,
1989
, “
Initial Turbulence Effect on Jet Evolution With and Without Tonal Excitation
,”
Phys. Fluids A
,
1
(
7
), pp.
1240
1248
.
21.
Rajagopalan
,
S.
, and
Ko
,
N.
,
1996
, “
Velocity and Spanwise Vorticity Measurements in an Excited Mixing Layer of a Plane Jet
,”
Exp. Fluids
,
20
(
5
), pp.
346
357
.
22.
Alekseenko
,
S.
,
Markovich
,
D.
, and
Semenov
,
V.
,
2002
, “
Turbulent Structure of a Gas-Liquid Impinging Jet
,”
Fluid Dyn.
,
37
(
5
), pp.
684
694
.
23.
Olsen
,
J.
,
Rajagopalan
,
S.
, and
Antonia
,
R.
,
2003
, “
Jet Column Modes in Both a Plane Jet and a Passively Modified Plane Jet Subject to Acoustic Excitation
,”
Exp. Fluids
,
35
(
3
), pp.
278
287
.
24.
Birbaud
,
A.-L.
,
Durox
,
D.
,
Ducruix
,
S.
, and
Candel
,
S.
,
2007
, “
Dynamics of Free Jets Submitted to Upstream Acoustic Modulations
,”
Phys. Fluids
,
19
(
1
), p.
013602
.
25.
Hsiao
,
F.-B.
, and
Huang
,
J.-M.
,
1990
, “
On the Evolution of Instabilities in the Near Field of a Plane Jet
,”
Phys. Fluids A
,
2
(
3
), pp.
400
412
.
26.
Ziada
,
S.
,
1995
, “
Feedback Control of Globally Unstable Flows: Impinging Shear Flows
,”
J. Fluids Struct.
,
9
(
8
), pp.
907
923
.
27.
Iio
,
S.
,
Hirashita
,
K.
,
Katayama
,
Y.
,
Haneda
,
Y.
,
Ikeda
,
T.
, and
Uchiyama
,
T.
,
2013
, “
Jet Flapping Control With Acoustic Excitation
,”
J. Flow Control Meas. Visualization
,
1
(
2
), p.
49
.
28.
Chambers
,
F.
, and
Goldschmidt
,
V.
,
1982
, “
Acoustic Interaction With a Turbulent Plane Jet: Effects on Mean Flow
,”
AIAA J.
,
20
(
6
), pp.
797
804
.
29.
Huang
,
J.-M.
, and
Hsiao
,
F.-B.
,
1999
, “
On the Mode Development in the Developing Region of a Plane Jet
,”
Phys. Fluids
,
11
(
7
), pp.
1847
1857
.
30.
Kozlov
,
G.
,
Grek
,
G.
,
Sorokin
,
A.
, and
Litvinenko
,
Y. A.
,
2008
, “
Influence of Initial Conditions at the Nozzle Exit on the Structure of Round Jet
,”
Thermophys. Aeromechanics
,
15
(
1
), pp.
55
68
.
31.
Azevedo
,
L.
,
Webb
,
B.
, and
Queiroz
,
M.
,
1994
, “
Pulsed Air Jet Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
8
(
3
), pp.
206
213
.
32.
Janetzke
,
T.
,
Nitsche
,
W.
, and
Täge
,
J.
,
2008
, “
Experimental Investigations of Flow Field and Heat Transfer Characteristics Due to Periodically Pulsating Impinging Air Jets
,”
Heat Mass Transfer
,
45
(
2
), pp.
193
206
.
33.
Yeh
,
Y.-L.
,
Hsu
,
C.-C.
,
Chiang
,
C.-H.
, and
Hsiao
,
F.-B.
,
2009
, “
Vortical Structure Evolutions and Spreading Characteristics of a Plane Jet Flow Under Anti-Symmetric Long-Wave Excitation
,”
Exp. Therm. Fluid Sci.
,
33
(
4
), pp.
630
641
.
34.
Samimy
,
M.
,
Kim
,
J.-H.
,
Kastner
,
J.
,
Adamovich
,
I.
, and
Utkin
,
Y.
,
2007
, “
Active Control of High-Speed and High-Reynolds-Number Jets Using Plasma Actuators
,”
J. Fluid Mech.
,
578
, pp.
305
330
.
35.
Sinha
,
A.
,
Alkandry
,
H.
,
Kearney-Fischer
,
M.
,
Samimy
,
M.
, and
Colonius
,
T.
,
2012
, “
The Impulse Response of a High-Speed Jet Forced With Localized Arc Filament Plasma Actuators
,”
Phys. Fluids
,
24
(
12
), p.
125104
.
36.
Crawley
,
M. B.
,
Kuo
,
C.-W.
, and
Samimy
,
M.
,
2016
, “
Vortex Dynamics and Sound Emission in an Excited High-Speed Jet
,”
AIAA
Paper No. 2016-2985.
37.
Kuo
,
C.-W.
,
Cluts
,
J.
, and
Samimy
,
M.
,
2017
, “
Effects of Excitation Around Jet Preferred Mode Strouhal Number in High-Speed Jets
,”
Exp. Fluids
,
58
(
4
), p.
35
.
38.
Gutmark
,
E.
, and
Ho
,
C.-M.
,
1983
, “
Preferred Modes and the Spreading Rates of Jets
,”
Phys. Fluids
,
26
(
10
), pp.
2932
2938
.
39.
Kozlov
,
V. V.
,
Grek
,
G. R.
, and
Litvinenko
,
Y. A.
,
2016
, “
Plane Jets Affected by Initial Conditions and Acoustic Perturbations
,”
Visualization of Conventional and Combusting Subsonic Jet Instabilities
,
Springer
, Berlin, pp.
51
63
.
40.
Beltaos
,
S.
, and
Rajaratnam
,
N.
,
1973
, “
Plane Turbulent Impinging Jets
,”
J. Hydraul. Res.
,
11
(
1
), pp.
29
59
.
41.
Tu
,
C.
, and
Wood
,
D.
,
1996
, “
Wall Pressure and Shear Stress Measurements Beneath an Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
4
), pp.
364
373
.
42.
Zhe
,
J.
, and
Modi
,
V.
,
2001
, “
Near Wall Measurements for a Turbulent Impinging Slot Jet (Data Bank Contribution)
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
112
120
.
43.
Guo
,
Y.
, and
Wood
,
D.
,
2002
, “
Measurements in the Vicinity of a Stagnation Point
,”
Exp. Therm. Fluid Sci.
,
25
(
8
), pp.
605
614
.
44.
Lacanette
,
D.
,
Gosset
,
A.
,
Vincent
,
S.
,
Buchlin
,
J.-M.
, and
Arquis
,
É.
,
2006
, “
Macroscopic Analysis of Gas-Jet Wiping: Numerical Simulation and Experimental Approach
,”
Phys. Fluids
,
18
(
4
), p.
042103
.
45.
Dogruoz
,
M. B.
,
Ortega
,
A.
, and
Westphal
,
R. V.
,
2015
, “
Measurements of Skin Friction and Heat Transfer Beneath an Impinging Slot Jet
,”
Exp. Therm. Fluid Sci.
,
60
, pp.
213
222
.
46.
Patel
,
V.
,
1965
, “
Calibration of the Preston Tube and Limitations on Its Use in Pressure Gradients
,”
J. Fluid Mech.
,
23
(
1
), pp.
185
208
.
47.
New
,
T.
, and
Long
,
J.
,
2015
, “
Dynamics of Laminar Circular Jet Impingement Upon Convex Cylinders
,”
Phys. Fluids
,
27
(
2
), p.
024109
.
48.
Long
,
J.
, and
New
,
T.
,
2016
, “
Vortex Dynamics and Wall Shear Stress Behaviour Associated With an Elliptic Jet Impinging Upon a Flat Plate
,”
Exp. Fluids
,
57
(
7
), p. 121.
49.
Amili
,
O.
,
Hind
,
M. D.
,
Naughton
,
J. W.
, and
Soria
,
J.
,
2016
, “
Evaluation of a Film-Based Wall Shear Stress Measurement Technique in a Turbulent Channel Flow
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
437
442
.
50.
Phares
,
D. J.
,
Smedley
,
G. T.
, and
Flagan
,
R. C.
,
2000
, “
The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface
,”
J. Fluid Mech.
,
418
, pp.
351
375
.
51.
El Hassan
,
M.
,
Assoum
,
H. H.
,
Sobolik
,
V.
,
Vétel
,
J.
,
Abed-Meraim
,
K.
,
Garon
,
A.
, and
Sakout
,
A.
,
2012
, “
Experimental Investigation of the Wall Shear Stress and the Vortex Dynamics in a Circular Impinging Jet
,”
Exp. Fluids
,
52
(
6
), pp.
1475
1489
.
52.
El Hassan
,
M.
,
Assoum
,
H.
,
Martinuzzi
,
R.
,
Sobolik
,
V.
,
Abed-Meraim
,
K.
, and
Sakout
,
A.
,
2013
, “
Experimental Investigation of the Wall Shear Stress in a Circular Impinging Jet
,”
Phys. Fluids
,
25
(
7
), p.
077101
.
53.
Zaman
,
K.
, and
Hussain
,
A.
,
1980
, “
Vortex Pairing in a Circular Jet Under Controlled Excitation—Part 1: General Jet Response
,”
J. Fluid Mech.
,
101
(
3
), pp.
449
491
.
54.
Janetzke
,
T.
, and
Nitsche
,
W.
,
2009
, “
Time Resolved Investigations on Flow Field and Quasi Wall Shear Stress of an Impingement Configuration With Pulsating Jets by Means of High Speed PIV and a Surface Hot Wire Array
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
877
885
.
55.
Ceccio
,
S. L.
,
2010
, “
Friction Drag Reduction of External Flows With Bubble and Gas Injection
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
183
203
.
56.
Young
,
R. M.
,
Hargather
,
M.
, and
Settles
,
G.
,
2013
, “
Shear Stress and Particle Removal Measurements of a Round Turbulent Air Jet Impinging Normally Upon a Planar Wall
,”
J. Aerosol Sci.
,
62
, pp.
15
25
.
57.
Ritcey
,
A.
,
McDermid
,
J. R.
, and
Ziada
,
S.
,
2017
, “
The Maximum Skin Friction and Flow Field of a Planar Impinging Gas Jet
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101204
.
58.
Davy
,
C.
,
Alvi
,
F.
, and
Naughton
,
J.
,
2002
, “
Surface Flow Measurements of Micro-Supersonic Impinging Jets
,”
AIAA
Paper No. 2002-3196
.
59.
Naughton
,
J. W.
,
Schabron
,
B.
,
Hind
,
M. D.
, and
Alvi
,
F.
,
2011
, “
Improved Wall Shear Stress Measurements on a Supersonic Microjet Impingement Surface
,”
AIAA
Paper No. 2011-1096.
60.
Naughton
,
J. W.
, and
Brown
,
J. L.
,
1997
, “
Skin-Friction Distribution Near a Cylinder Mounted on a Flat Plate
,”
AIAA
Paper No. 97-1783.
61.
Peterson
,
S. D.
, and
Plesniak
,
M. W.
,
2004
, “
Surface Shear Stress Measurements Around Multiple Jets in Crossflow Using the Fringe Imaging Skin Friction Technique
,”
Exp. Fluids
,
37
(
4
), pp.
497
503
.
62.
Johansson
,
T. G.
,
Mehdi
,
F.
,
Shiri
,
F.
, and
Naughton
,
J. W.
,
2005
, “
Skin Friction Measurements Using Oil Film Interferometry and Laser Doppler Anemometry
,”
AIAA
Paper No. 2005-4673.
63.
Zanoun
,
E.-S.
,
Nagib
,
H.
, and
Durst
,
F.
,
2009
, “
Refined CF Relation for Turbulent Channels and Consequences for High-Re Experiments
,”
Fluid Dyn. Res.
,
41
(
2
), p.
021405
.
64.
Schülein
,
E.
,
2014
, “
Optical Method for Skin-Friction Measurements on Fast-Rotating Blades
,”
Exp. Fluids
,
55
(
2
), p. 1672.
65.
Drake
,
A.
, and
Kennelly
,
R. A.
,
1999
, “
In-Flight Skin Friction Measurements Using Oil Film Interferometry
,”
J. Aircr.
,
36
(
4
), pp.
723
725
.
66.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), p.
1406
.
67.
Scarano
,
F.
, and
Riethmuller
,
M. L.
,
2000
, “
Advances in Iterative Multigrid PIV Image Processing
,”
Exp. Fluids
,
29
(
Suppl. 1
), pp.
S051
S060
.
68.
Naughton
,
J. W.
, and
Sheplak
,
M.
,
2002
, “
Modern Developments in Shear-Stress Measurement
,”
Prog. Aerosp. Sci.
,
38
(
6–7
), pp.
515
570
.
69.
Desse
,
J.-M.
,
2003
, “
Oil-Film Interferometry Skin-Friction Measurement Under White Light
,”
AIAA J.
,
41
(
12
), pp.
2468
2477
.
70.
Naughton
,
J.
, and
Hind
,
M.
,
2013
, “
Multi-Image Oil-Film Interferometry Skin Friction Measurements
,”
Meas. Sci. Technol.
,
24
(
12
), p.
124003
.
71.
Pailhas
,
G.
,
Barricau
,
P.
,
Touvet
,
Y.
, and
Perret
,
L.
,
2009
, “
Friction Measurement in Zero and Adverse Pressure Gradient Boundary Layer Using Oil Droplet Interferometric Method
,”
Exp. Fluids
,
47
(
2
), pp.
195
207
.
72.
Segalini
,
A.
,
Rüedi
,
J.-D.
, and
Monkewitz
,
P. A.
,
2015
, “
Systematic Errors of Skin-Friction Measurements by Oil-Film Interferometry
,”
J. Fluid Mech.
,
773
, pp.
298
326
.
73.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
, Hoboken, NJ.
74.
Pritchard
,
P. J.
,
2011
,
Fox and McDonald's Introduction to Fluid Mechanics
, Vol.
8
,
Wiley
,
New York
, p.
440
.
75.
Smith
,
B. L.
, and
Glezer
,
A.
,
1998
, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
,
10
(
9
), pp.
2281
2297
.
76.
Blevins
,
R. D.
,
1984
,
Applied Fluid Dynamics Handbook
,
Van Nostrand Reinhold Co
.,
New York
, p.
236
.
77.
Arthurs
,
D.
,
2012
, “Self-Excited Oscillations of the Impinging Planar Jet,”
Ph.D. thesis
, McMaster University, Hamilton, ON, Canada.
78.
Yu
,
M.-H.
, and
Monkewitz
,
P. A.
,
1993
, “
Oscillations in the Near Field of a Heated Two-Dimensional Jet
,”
J. Fluid Mech.
,
255
(
1
), pp.
323
347
.
79.
Ellen
,
C.
, and
Tu
,
C.
,
1984
, “
An Analysis of Jet Stripping of Liquid Coatings
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
399
404
.
80.
Hussain
,
A. F.
,
1986
, “
Coherent Structures and Turbulence
,”
J. Fluid Mech.
,
173
(
1
), pp.
303
356
.
81.
Krothapalli
,
A.
,
Rajkuperan
,
E.
,
Alvi
,
F.
, and
Lourenco
,
L.
,
1999
, “
Flow Field and Noise Characteristics of a Supersonic Impinging Jet
,”
J. Fluid Mech.
,
392
, pp.
155
181
.
82.
Alvi
,
F. S.
,
Shih
,
C.
,
Elavarasan
,
R.
,
Garg
,
G.
, and
Krothapalli
,
A.
,
2003
, “
Control of Supersonic Impinging Jet Flows Using Supersonic Microjets
,”
AIAA J.
,
41
(
7
), pp.
1347
1385
.
83.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
473
537
.
84.
Ho
,
C.-M.
, and
Hsiao
,
F.-B.
,
1983
, “
Evolution of Coherent Structures in a Lip Jet
,”
Structure of Complex Turbulent Shear Flow
,
Springer
, Berlin, pp.
121
136
.
You do not currently have access to this content.