This paper presents an original experimental study concerning the structural response of a flexible lightweight hydrofoil undergoing various flow conditions including partial cavitating flow. It is based on the analysis of the static deformation, the vibrations, the strains, and the stresses of a polyacetal NACA0015 cantilevered hydrofoil in a hydrodynamic tunnel, at Reynolds numbers ranging from 3 × 105 to 6 × 105. A specific distance measurement laser device was developed to measure the static deformation of the hydrofoil. The vibration response was measured by means of two laser vibrometers in order to identify the structural modal response. The strains and stresses were obtained from integrated strain gauges embedded in the foil close to the root section. A high-speed camera was used in order to analyze unsteady features of the cavitating flow. This paper presents the experimental setup and several results in both noncavitating and cavitating flow that should be very useful for numerical developments of fluid structure interaction (FSI) in heavy fluid. Several observations are reported in the paper showing the strong coupling between the fluid and the structure. Particularly, a frequency lock-in of the cavity frequency to the first bending mode is clearly observed for a narrow band of cavitation numbers.

References

1.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts NREC and Oxford University Press
, Oxford, UK.
2.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, New York.
3.
Franc
,
J. P.
,
2006
, “
Physics and Control of Cavitation
,” AVT-143 RTO AVT/VKI Lecture Series, Sint-Genesius-Rode, Belgium, Mar. 20--23, Paper No.
RTO-EN-AVT-143
.http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjImcLG3NbWAhUH3SYKHY3nDEYQFggqMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA476522&usg=AOvVaw0SjwcjgkcVXnUlWmwvBxa_
4.
Callenaere
,
M.
,
Franc
,
J.
,
Michel
,
J.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp. 223–256.
5.
Laberteaux
,
K.
, and
Ceccio
,
S.
,
2001
, “
Partial Cavity Flows—Part 1: Cavities Forming on Models Without Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
1
41
.
6.
Laberteaux
,
K.
, and
Ceccio
,
S.
,
2001
, “
Partial Cavity Flows—Part 2: Cavities Forming on Test Objects With Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
43
63
.
7.
Leroux
,
J. B.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2005
, “
A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil
,”
Phys. Fluids
,
17
(5), p. 052101.
8.
Kawanami
,
Y.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
795
.
9.
Young
,
Y. L.
,
2008
, “
Fluid–Structure Interaction Analysis of Flexible Composite Marine Propellers
,”
J. Fluids Struct.
,
24
(
6
), pp.
799
818
.
10.
Sontvedt
,
T.
,
1974
, “
Propeller Blade Stresses, Application of Finite Element Methods
,”
Comput. Struct.
,
4
(
1
), pp.
193
204
.
11.
Lin
,
H. J.
,
Lin
,
J. J.
, and
Chuang
,
T. J.
,
2005
, “
Strength Evaluation of a Composite Marine Propeller Blade
,”
J. Reinf. Plast. Compos.
,
24
(
17
), pp.
1791
1807
.
12.
Young
,
Y. L.
,
Motley
,
M. R.
, and
Yeung
,
R. W.
,
2009
, “
Hydroelastic Response of Wind or Tidal Turbines
,”
ASME
Paper No. OMAE2009-80087.
13.
Mulcahy
,
N. L.
,
Prusty
,
B. G.
, and
Gardiner
,
C. P.
,
2010
, “
Flexible Composite Hydrofoils and Propeller Blades
,”
International Maritime Conference: Maritime Industry—Challenges, Opportunities and Imperatives
, Sydney, Australia, Jan. 27–29, pp.
438
448
.http://search.informit.com.au/documentSummary;dn=510861154600090;res=IELENG
14.
Motley
,
M. R.
, and
Young
,
Y. L.
,
2011
, “
Performance-Based Design and Analysis of Flexible Composite Propulsors
,”
J. Fluids Struct.
,
27
(
8
), pp.
1310
1325
.
15.
Coutier-Delgosha
,
O.
,
Stutz
,
B.
,
Vabre
,
A.
, and
Legoupil
,
S.
,
2007
, “
Analysis of Cavitating Flow Structure by Experimental and Numerical Investigations
,”
J. Fluid Mech.
,
578
, pp.
171
222
.
16.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Cavitation Influence on von Karman Vortex Shedding and Induced Hydrofoil Vibrations
,”
ASME J. Fluids Eng.
,
129
(
8
), pp. 966–973.
17.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2014
, “
Influence of Cavitation on the Hydroelastic Stability of Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
170
185
.
18.
Akcabay
,
D. T.
,
Chae
,
E. J.
,
Young
,
Y. L.
,
Ducoin
,
A.
, and
Astolfi
,
J. A.
,
2014
, “
Cavity Induced Vibration of Flexible Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
463
484
.
19.
Ducoin
,
A.
,
Deniset
,
F.
,
Astolfi
,
J. A.
, and
Sigrist
,
J.-F.
,
2009
, “
Numerical and Experimental Investigation of Hydrodynamic Characteristics of Deformable Hydrofoils
,”
J. Ship Res.
,
53
(4), pp.
214
226
.
20.
Reese
,
M. C.
,
2010
, “
Vibration and Damping of Hydrofoil in Uniform Flow
,”
Master thesis
, Pennsylvania State University, State College, PA.https://etda.libraries.psu.edu/catalog/10741
21.
Ducoin
,
A.
,
Astolfi
,
J. A.
, and
Sigrist
,
J.-F.
,
2012
, “
An Experimental Analysis of Fluid Structure Interaction on a Flexible Hydrofoil in Various Flow Regimes Including Cavitating Flow
,”
Eur. J. Mech. B.
,
36
, pp.
63
74
.
22.
Gaugain
,
F.
,
Deniset
,
F.
,
Astolfi
,
J. A.
, and
Sigrist
,
J.-F.
,
2012
, “
Numerical and Experimental Study of Hydroelastic Behaviour of a Hydrofoil
,”
Tenth International Conference on Flow-Induced Vibrations
, Dublin, Ireland, July 3–7, pp.
67
74
.http://programme.exordo.com/fiv2012/delegates/presentation/28/
23.
Benaouicha
,
M.
,
Astolfi
,
J. A.
,
Ducoin
,
A.
,
Frikha
,
S.
, and
Coutier-Delgosha
,
O.
,
2010
, “
A Numerical Study of Cavitation Induced Vibration
,”
ASME
Paper No. PVP2010-25270.
24.
Benaouicha
,
M.
, and
Astolfi
,
J. A.
,
2012
, “
Analysis of Added Mass in Cavitating Flow
,”
J. Fluids Struct.
,
31
, pp.
30
48
.
25.
Gaugain
,
F.
,
2013
, “
Analyse Expérimentale et Simulation Numérique de l’interaction Fluide-Structure d’un Hydrofoil Élastique en Écoulement Subcavitant et Cavitant
,” Ph.D. thesis, Ecole Navale-Arts et Métiers, Paris, France.
26.
Harwood
,
C.
,
Ward
,
J.
,
Young
,
Y. L.
, and
Ceccio
,
S.
,
2016
, “
Experimental Investigation of the Hydro-Elastic Response of a Surface-Piercing Hydrofoil in Multi-Phase Flow
,”
31st Symposium on Naval Hydrodynamics
, Monterey, CA, Sept. 11–16, pp. 1–19.http://www.caseyharwood.com/wp-content/uploads/2016/11/Harwood_C.pdf
27.
Pearce
,
B.
,
Brandner
,
P.
,
Garg
,
N.
,
Young
,
Y. L.
,
Phillips
,
A. W.
, and
Clarke
,
D.
,
2016
, “
The Influence of Bend-Twist Coupling on the Dynamic Response of Cavitating Composite Hydrofoils
,”
Fifth International Symposium on Marine Propulsors Conference
, Helsinki, Finland, June 12–15, pp. 803–813.http://ecite.utas.edu.au/117639
28.
Blevins
,
R. D.
,
1995
,
Formulas for Natural Frequency and Mode Shape
, Krieger Publishing Company, Malabar, FL.
29.
Delafin
,
P. L.
,
Deniset
,
F.
, and
Astolfi
,
J. A.
,
2014
, “
Effects of the Laminar Separation Bubble Induced Transition on the Hydrodynamic Performance of a Hydrofoil
,”
Eur. J. Mech. B
,
46
, pp.
190
200
.
30.
Ducoin
,
A.
,
Astolfi
,
J. A.
, and
Gobert
,
M. L.
,
2012
, “
An Experimental Study of Boundary Layer Transition Induced Vibrations on a Hydrofoil
,”
J. Fluids Struct.
,
32
, pp.
37
51
.
You do not currently have access to this content.