An analysis of the vortex dynamics in the wake of three different freestream turbine concepts is conducted to gain a better understanding of the main processes affecting the energy recovery in their wakes. The turbine technologies considered are the axial-flow turbine (AFT), the crossflow turbine (CFT), also known as the H-Darrieus turbine, and the oscillating-foil turbine (OFT). The analysis is performed on single turbines facing a uniform oncoming flow and operating near their optimal efficiency conditions at a Reynolds number of 107. Three-dimensional (3D) delayed detached-eddy simulations (DDES) are carried out using a commercial finite volume Navier–Stokes solver. It is found that the wake dynamics of the AFT is significantly affected by the triggering of an instability, while that of the CFT and the OFT are mainly governed by the mean flow field stemming from the tip vortices' induction.

References

1.
Sherry
,
M.
,
Nemes
,
A.
,
Lo Jacono
,
D.
,
Blackburn
,
H. M.
, and
Sheridan
,
J.
,
2013
, “
The Interaction of Helical Tip and Root Vortices in a Wind Turbine Wake
,”
Phys. Fluids
,
25
(
11
), p.
117102
.
2.
Chamorro
,
L. P.
,
Troolin
,
D. R.
,
Lee
,
S.-J.
,
Arndt
,
R. E. A.
, and
Sotiropoulos
,
F.
,
2013
, “
Three-Dimensional Flow Visualization in the Wake of a Miniature Axial-Flow Hydrokinetic Turbine
,”
Exp. Fluids
,
54
(
2
), p.
12
.
3.
Lignarolo
,
L. E. M.
,
Ragni
,
D.
,
Krishnaswami
,
C.
,
Chen
,
Q.
,
Simão Ferreira
,
C. J.
, and
van Bussel
,
G. J. W.
,
2014
, “
Experimental Analysis of the Wake of a Horizontal-Axis Wind-Turbine Model
,”
Renewable Energy
,
70
, pp.
31
46
.
4.
Simão Ferreira
,
C. J.
,
Van Bussel
,
G. J. W.
, and
Van Kuik
,
G. A. M.
,
2006
, “
Wind Tunnel Hotwire Measurements, Flow Visualization and Thrust Measurement of a VAWT in Skew
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
487
497
.
5.
Simão Ferreira
,
C. J.
,
Van Bussel
,
G.
,
Scarano
,
F.
, and
Van Kuik
,
G.
,
2007
, “
2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine
,”
AIAA
Paper No. 2007-1366.
6.
Simão Ferreira
,
C. J.
,
Kuik
,
G.
,
Bussel
,
G.
, and
Scarano
,
F.
,
2009
, “
Visualization by PIV of Dynamic Stall on a Vertical Axis Wind Turbine
,”
Exp. Fluids
,
46
(
1
), pp.
97
108
.
7.
Simão Ferreira
,
C. J.
,
Hofemann
,
C.
,
Dixon
,
K.
,
Van Kuik
,
G.
, and
Van Bussel
,
G.
,
2010
, “
3D Wake Dynamics of the VAWT: Experimental and Numerical Investigation
,”
AIAA
Paper No. 2010-643.
8.
Hofemann
,
C.
,
Simão Ferreira
,
C. J.
,
Van Bussel
,
G. J.
,
Van Kuik
,
G. A. M.
,
Scarano
,
F.
, and
Dixon
,
K. R.
,
2008
, “
3D Stereo PIV Study of Tip Vortex Evolution on a VAWT
,”
European Wind Energy Conference and Exhibition
(
EWEC
), Brussels, Belgium, Mar. 31–Apr. 3, pp. 1–8.https://repository.tudelft.nl/islandora/object/uuid%3A7a500ed8-586c-40da-af62-3cd65d5e3bfe
9.
Scheurich
,
F.
,
Fletcher
,
T. M.
, and
Brown
,
R. E.
,
2011
, “
Simulating the Aerodynamic Performance and Wake Dynamics of a Vertical-Axis Wind Turbine
,”
Wind Energy
,
14
(
2
), pp.
159
177
.
10.
Tescione
,
G.
,
Ragni
,
D.
,
He
,
C.
,
Simão Ferreira
,
C. J.
, and
van Bussel
,
G. J. W.
,
2014
, “
Near Wake Flow Analysis of a Vertical Axis Wind Turbine by Stereoscopic Particle Image Velocimetry
,”
Renewable Energy
,
70
pp.
47
61
.
11.
Deng
,
J.
,
Caulfield
,
C. P.
, and
Shao
,
X.
,
2014
, “
Effect of Aspect Ratio on the Energy Extraction Efficiency of Three-Dimensional Flapping Foils
,”
Phys. Fluids
,
26
(
4
), p.
043102
.
12.
Blondeaux
,
P.
,
Fornarelli
,
F.
,
Guglielmini
,
L.
,
Triantafyllou
,
M. S.
, and
Verzicco
,
R.
,
2005
, “
Numerical Experiments on Flapping Foils Mimicking Fish-Like Locomotion
,”
Phys. Fluids
,
17
(
11
), p.
113601
.
13.
Dong
,
H.
,
Mittal
,
R.
, and
Najjar
,
F. M.
,
2006
, “
Wake Topology and Hydrodynamic Performance of Low-Aspect-Ratio Flapping Foils
,”
J. Fluid Mech.
,
566
, pp.
309
343
.
14.
Buchholz
,
J. H. J.
, and
Smits
,
A. J.
,
2006
, “
On the Evolution of the Wake Structure Produced by a Low-Aspect-Ratio Pitching Panel
,”
J. Fluid Mech.
,
546
, pp.
433
443
.
15.
Buchholz
,
J. H. J.
, and
Smits
,
A. J.
,
2008
, “
The Wake Structure and Thrust Performance of a Rigid Low-Aspect-Ratio Pitching Panel
,”
J. Fluid Mech.
,
603
, pp.
331
365
.
16.
Burton
,
T.
,
2011
,
Wind Energy Handbook
, 2nd ed.,
Wiley
,
Chichester, UK
.
17.
Sørensen
,
J. N.
,
2011
, “
Aerodynamic Aspects of Wind Energy Conversion
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
427
448
.
18.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design: With Emphasis on Darrieus Concept
, Press International Polytechnique, Montreal, QC, Canada.
19.
Kinsey
,
T.
, and
Dumas
,
G.
,
2014
, “
Optimal Operating Parameters for an Oscillating Foil Turbine at Reynolds Number 500,000
,”
AIAA J.
,
52
(
9
), pp.
1885
1895
.
20.
Klaptocz
,
V.
,
Crawford
,
C.
,
Shives
,
M.
,
Franchini
,
I.
, and
Mete Sireli
,
E.
,
2014
, “
Impact of Channel Blockage, Free Surface Proximity and Foundations on the Performance of Tidal/River Energy Converters
,” Marine Renewables Canada, Vancouver, BC, Canada, Technical Report No. TC114.
21.
Gosselin
,
R.
,
Dumas
,
G.
, and
Boudreau
,
M.
,
2013
, “
Parametric Study of H-Darrieus Vertical-Axis Turbines Using uRANS Simulations
,”
21st Annual Conference of the CFD Society of Canada
(CFDSC), Sherbrooke, QC, Canada, May 6–9, Paper No.
178
http://www.lmfn.ulaval.ca/fileadmin/lmfn/documents/Articles/GosselinDumasBoudreau-CFD2013_reprint.pdf.
22.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Three-Dimensional Effects on an Oscillating-Foil Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071105
.
23.
Bachant
,
P.
, and
Wosnik
,
M.
,
2014
, “
Reynolds Number Dependence of Cross-Flow Turbine Performance and Near-Wake Characteristics
,”
Second Marine Energy Technology Symposium
(
METS
), Seattle, WA, Apr. 15–17, p.
9
.https://vtechworks.lib.vt.edu/handle/10919/49210
24.
Chamorro
,
L. P.
,
Arndt
,
R. E. A.
, and
Sotiropoulos
,
F.
,
2012
, “
Reynolds Number Dependence of Turbulence Statistics in the Wake of Wind Turbines
,”
Wind Energy
,
15
(
5
), pp.
733
742
.
25.
Rethore
,
P.-E.
,
2009
, “
Wind Turbine Wake in Atmospheric Turbulence
,”
Ph.D. thesis
, Aalborg University, Aalborg, Denmark.http://orbit.dtu.dk/files/4548747/ris-phd-53.pdf
26.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
27.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
28.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aérosp.
,
1
, pp.
5
21
.
29.
Shur
,
M.
,
Spalart
,
P. R.
,
Strelets
,
M.
, and
Travin
,
A.
,
1999
, “
Detached-Eddy Simulation of an Airfoil at High Angle of Attack
,”
Fourth International Symposium on Engineering Turbulence Modelling and Measurements
, Ajaccio, France, May 24–26, pp.
669
678
.https://www.researchgate.net/publication/236888801_Detached_Eddy_Simulation_of_an_Airfoil_at_High_Angle_of_Attack
30.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES, First AFOSR International Conference on DNS/LES
, Ruston, LA, Aug. 4–8, pp.
137
147
.https://www.researchgate.net/publication/236888805_Comments_on_the_Feasibility_of_LES_for_Wings_and_on_a_Hybrid_RANSLES_Approach
31.
Siemens,
2014
, “
CD-Adapco™ STAR-CCM+® V9 User's Guide
,” Siemens, Munich, Germany, accessed Sept. 30, 2017, http://www.cd-adapco.com/products/star-ccm
32.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P.
,
2002
, “
Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows
,”
Advances in LES of Complex Flows
, Vol.
65
, Springer, Dordrecht, The Netherlands, pp.
239
254
.
33.
Kinsey
,
T.
, and
Dumas
,
G.
,
2017
, “
Impact of Channel Blockage on the Performance of Axial and Cross-Flow Hydrokinetic Turbines
,”
Renewable Energy
,
103
, pp.
239
254
.
34.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.
35.
Spalart
,
P. R.
,
2001
, “
Young-Person's Guide to Detached-Eddy Simulation Grids
,” NASA Langley Research Center, Hampton, VA, Technical Report No.
NASA/CR-2001-211032
https://ntrs.nasa.gov/search.jsp?R=20010080473.
36.
Mockett
,
C.
,
Perrin
,
R.
,
Reimann
,
T.
,
Braza
,
M.
, and
Thiele
,
F.
,
2010
, “
Analysis of Detached-Eddy Simulation for the Flow Around a Circular Cylinder With Reference to PIV Data
,”
Flow Turbul. Combust.
,
85
(
2
), pp.
167
180
.
37.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021104
.
38.
Mo
,
J.-O.
,
Choudhry
,
A.
,
Arjomandi
,
M.
, and
Lee
,
Y.-H.
,
2013
, “
Large Eddy Simulation of the Wind Turbine Wake Characteristics in the Numerical Wind Tunnel Model
,”
J. Wind Eng. Ind. Aerodyn.
,
112
, pp.
11
24
.
39.
Chatelain
,
P.
,
Backaert
,
S.
,
Winckelmans
,
G.
, and
Kern
,
S.
,
2013
, “
Large Eddy Simulation of Wind Turbine Wakes
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
587
605
.
40.
Kang
,
S.
,
Borazjani
,
I.
,
Colby
,
J. A.
, and
Sotiropoulos
,
F.
,
2012
, “
Numerical Simulation of 3D Flow Past a Real-Life Marine Hydrokinetic Turbine
,”
Adv. Water Resour.
,
39
, pp.
33
43
.
41.
Tedds
,
S. C.
,
Owen
,
I.
, and
Poole
,
R. J.
,
2014
, “
Near-Wake Characteristics of a Model Horizontal Axis Tidal Stream Turbine
,”
Renewable Energy
,
63
, pp.
222
235
.
42.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2014
, “
A New Analytical Model for Wind-Turbine Wakes
,”
Renewable Energy
,
70
, pp.
116
123
.
43.
Chamorro
,
L. P.
, and
Porté-Agel
,
F.
,
2009
, “
A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects
,”
Boundary-Layer Meteorol.
,
132
(
1
), pp.
129
149
.
44.
Chu
,
C.-R.
, and
Chiang
,
P.-H.
,
2014
, “
Turbulence Effects on the Wake Flow and Power Production of a Horizontal-Axis Wind Turbine
,”
J. Wind Eng. Ind. Aerodyn.
,
124
, pp.
82
89
.
45.
Medici
,
D.
, and
Alfredsson
,
P. H.
,
2006
, “
Measurements on a Wind Turbine Wake: 3D Effects and Bluff Body Vortex Shedding
,”
Wind Energy
,
9
(
3
), pp.
219
236
.
46.
Sanderse
,
B.
,
van der Pijl
,
S. P.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.
47.
Zhang
,
W.
,
Markfort
,
C. D.
, and
Porté-Agel
,
F.
,
2012
, “
Near-Wake Flow Structure Downwind of a Wind Turbine in a Turbulent Boundary Layer
,”
Exp. Fluids
,
52
(
5
), pp.
1219
1235
.
48.
Felli
,
M.
,
Camussi
,
R.
, and
Di Felice
,
F.
,
2011
, “
Mechanisms of Evolution of the Propeller Wake in the Transition and Far Fields
,”
J. Fluid Mech.
,
682
, pp.
5
53
.
49.
Mycek
,
P.
,
Gaurier
,
B.
,
Germain
,
G.
,
Pinon
,
G.
, and
Rivoalen
,
E.
,
2014
, “
Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behaviour—Part II: Two Interacting Turbines
,”
Renewable Energy
,
68
, pp.
876
892
.
50.
Dixon
,
K.
,
Simão Ferreira
,
C.
,
Hofemann
,
C.
,
Van Bussel
,
G.
, and
Van Kuik
,
G.
,
2008
, “
A 3D Unsteady Panel Method for Vertical Axis Wind Turbines
,”
European Wind Energy Conference and Exhibition
(
EWEC
), Brussels, Belgium, Mar. 31–Apr. 3, pp.
2981
2990
.https://www.researchgate.net/publication/259089589_A_3D_unsteady_panel_method_for_vertical_axis_wind_turbines
51.
Bachant
,
P.
, and
Wosnik
,
M.
,
2015
, “
Characterising the Near-Wake of a Cross-Flow Turbine
,”
J. Turbul.
,
16
(
4
), pp.
392
410
.
52.
Battisti
,
L.
,
Zanne
,
L.
,
Dell'Anna
,
S.
,
Dossena
,
V.
,
Persico
,
G.
, and
Paradiso
,
B.
,
2011
, “
Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031201
.
53.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Stanford University, Stanford, CA, Technical Report No.
CTR-S88
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890015184.pdf.
54.
Schnipper
,
T.
,
Andersen
,
A.
, and
Bohr
,
T.
,
2009
, “
Vortex Wakes of a Flapping Foil
,”
J. Fluid Mech.
,
633
, pp.
411
423
.
You do not currently have access to this content.