Unsteady cavitating flows around propellers become increasingly prominent on large-scale and high-speed ships, but large eddy simulations (LES) are limited in the literature. In this study, numerical simulation of an unsteady cavitating flow around a highly skewed propeller in a nonuniform wake is performed based on an explicit LES approach with kμ subgrid model. Kunz cavitation model, volume of fluid (VOF) method, and a moving mesh scheme are adopted. The predicted evolution of the unsteady cavitating flow around a highly skewed propeller in a nonuniform ship wake is in good agreement with experimental results. An analysis of the factors affecting the cavitation on the propeller is conducted based on numerical simulation. Furthermore, the influences between cavitation structures and vortex structures are also briefly analyzed.

References

1.
Watanabe
,
T.
,
Kawamura
,
T.
,
Takekoshi
,
Y.
,
Maeda
,
M.
, and
Rhee
,
S. H.
,
2003
, “
Simulation of Steady and Unsteady Cavitation on a Marine Propeller Using a RANS CFD Code
,”
Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4, Paper No. GS-12-004.
2.
Hasuike
,
N.
,
Yamasaki
,
S.
, and
Ando
,
J.
,
2009
, “
Numerical Study on Cavitation Erosion Risk of Marine Propellers Operating in Wake Flow
,”
7th International Symposium on Cavitation
, Ann Arbor, MI, Aug. 17–22, Paper No. 30.
3.
Ji
,
B.
,
Luo
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2012
, “
Numerical Analysis of Cavitation Evolution and Excited Pressure Fluctuation Around a Propeller in Non-Uniform Wake
,”
Int. J. Multiphase Flow
,
43
, pp.
13
21
.
4.
Ji
,
B.
,
Luo
,
X.
,
Wang
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2011
, “
Unsteady Numerical Simulation of Cavitating Turbulent Flow Around a Highly Skewed Model Marine Propeller
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011102
.
5.
Ying
,
C.
, and
Lu
,
C. J.
,
2008
, “
A Homogenous-Equilibrium-Model Based Numerical Code for Cavitation Flows and Evaluation by Computation Cases
,”
J. Hydrodyn., Ser. B
,
20
(
2
), pp.
186
194
.
6.
Decaix
,
J.
, and
Goncalvès
,
E.
,
2013
, “
Compressible Effects Modeling in Turbulent Cavitating Flows
,”
Eur. J. Mech. B-Fluids
,
39
, pp.
11
31
.
7.
Goncalvès
,
E.
,
2011
, “
Numerical Study of Unsteady Turbulent Cavitating Flows
,”
Eur. J. Mech. B-Fluids
,
30
(
1
), pp.
26
40
.
8.
Wang
,
Y.
,
Liao
,
L.
,
Du
,
T.
,
Huang
,
C.
,
Liu
,
Y.
,
Fang
,
X.
, and
Liang
,
N.
,
2014
, “
A Study on the Collapse of Cavitation Bubbles Surrounding the Underwater-Launched Projectile and Its Fluid–Structure Coupling Effects
,”
Ocean Eng.
,
84
, pp.
228
236
.
9.
Huang
,
B.
,
Young
,
Y. L.
,
Wang
,
G.
, and
Shyy
,
W.
,
2013
, “
Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071301
.
10.
Bensow
,
R. E.
, and
Bark
,
G.
,
2010
, “
Simulating Cavitating Flows With LES in Openfoam
,”
Fifth European Conference on Computational Fluid Dynamics
,
J. C. F.
Pereira
, and
A.
Sequeira
, eds., Lisbon, Portugal, pp. 14–17.
11.
Bensow
,
R. E.
, and
Bark
,
G.
,
2010
, “
Implicit LES Predictions of the Cavitating Flow on a Propeller
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041302
.
12.
Lu
,
N. X.
,
Svennberg
,
U.
,
Bark
,
G.
, and
Bensow
,
R.
,
2012
, “
Numerical Simulations of the Cavitating Flow on a Marine Propeller
,”
8th International Symposium on Cavitation
,
Claus-Dieter OHL
, eds., Singapore, pp.
338
343
.
13.
Lu
,
N. X.
,
Bensow
,
R. E.
, and
Bark
,
G.
,
2014
, “
Large Eddy Simulation of Cavitation Development on Highly Skewed Propellers
,”
J. Mar. Sci. Technol.
,
19
(
2
), pp.
197
214
.
14.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
,
2007
, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Model.
,
31
(
3
), pp.
417
447
.
15.
Liu
,
D. M.
,
Liu
,
S. H.
,
Wu
,
Y. L.
, and
Xu
,
H. Y.
,
2009
, “
LES Numerical Simulation of Cavitation Bubble Shedding on ALE 25 and ALE 15 Hydrofoils
,”
J. Hydrodyn., Ser. B
,
21
(
6
), pp.
807
813
.
16.
Yu
,
X.
,
Huang
,
C.
,
Du
,
T.
,
Liao
,
L.
,
Wu
,
X.
,
Zheng
,
Z.
, and
Wang
,
Y.
,
2014
, “
Study of Characteristics of Cloud Cavity Around Axisymmetric Projectile by Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051303
.
17.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.
18.
Huang
,
B.
,
Zhao
,
Y.
, and
Wang
,
G.
,
2014
, “
Large Eddy Simulation of Turbulent Vortex-Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows
,”
Comput. Fluids
,
92
, pp.
113
124
.
19.
Wang
,
Y.
,
Huang
,
C.
,
Fang
,
X.
,
Yu
,
X.
,
Wu
,
X.
, and
Du
,
T.
,
2016
, “
Cloud Cavitating Flow Over a Submerged Axisymmetric Projectile and Comparison Between Two-Dimensional RANS and Three-Dimensional Large-Eddy Simulation Methods
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061102
.
20.
Kurobe
,
Y.
,
Ukon
,
Y.
,
Koyama
,
K.
, and
Makino
,
M.
,
1983
, “
Measurement of Cavity Volume and Pressure Fluctuations on a Model of the Training Ship SEIUN-MARU With Reference to Full Scale Measurement
,” Ship Research Institute, Technique Report No. (NAID) 110007663078.
21.
Takahashi
,
H.
,
1984
, “
Full Scale Measurements on Training Ship ‘SEIUN-MARU’
,”
17th International Towing Tank Conference (ITTC 84)
,
O.
Rutgersson
, eds., SSPA, Sweden, pp.
323
334
.
22.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
23.
Schmitt
,
F. G.
,
2007
, “
About Boussinesq's Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of its Validity
,”
C. R. Méc.
,
335
(
9
), pp.
617
627
.
24.
Wu
,
X. C.
,
Wang
,
Y. W.
, and
Huang
,
C. G.
,
2016
, “
Effect of Mesh Resolution on Large Eddy Simulation of Cloud Cavitating Flow Around a Three Dimensional Twisted Hydrofoil
,”
Eur. J. Mech. B-Fluids
,
55
(Pt. 1), pp.
229
240
.
25.
Passandideh-Fard
,
M.
, and
Roohi
,
E.
,
2008
, “
Transient Simulations of Cavitating Flows Using a Modified Volume-of-Fluid (VOF) Technique
,”
Int. J. Comput. Fluid Dyn.
,
22
(
1–2
), pp.
97
114
.
26.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.
27.
Temmerman
,
L.
,
Leschziner
,
M. A.
,
Mellen
,
C. P.
, and
Fröhlich
,
J.
,
2003
, “
Investigation of Wall-Function Approximations and Subgrid-Scale Models in Large Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
Int. J. Heat Fluid Flow
,
24
(
2
), pp.
157
180
.
28.
De Villiers
,
E.
,
2007
, “
The Potential of Large Eddy Simulation for the Modelling of Wall Bounded Flows
,” Ph.D. thesis, University of London, London.
29.
OpenFOAM Foundation
, 2011, “
Arbitrary Mesh Interface
,”
OpenFOAM Foundation, London
.
30.
Farrell
,
P. E.
, and
Maddison
,
J. R.
,
2011
, “
Conservative Interpolation Between Volume Meshes by Local Galerkin Projection
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
1
), pp.
89
100
.
31.
Mehdipour
,
R.
,
2013
, “
Simulating Propeller and Propeller-Hull Interaction in OpenFOAM
,”
M.Sc. thesis
, Centre for Naval Architecture Royal Institute of Technology, Stockholm, Sweden.
32.
Leroux
,
J. B.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2005
, “
A Joint Experimental and Numerical Study of Mechanisms Associated to Instability of Partial Cavitation on Two-Dimensional Hydrofoil
,”
Phys. Fluids
,
17
(
5
), p.
052101
.
33.
Sahner
,
J.
,
Weinkauf
,
T.
, and
Hege
,
H. C.
,
2005
, “
Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines
,”
EUROGRAPHICS-IEEE VGTC
Symposium on Visualization, Leeds, UK, pp.
151
160
.
You do not currently have access to this content.