Unstable cavitation presents an important speed barrier for underwater vehicles such as hydrofoil craft. In this paper, the authors concern about the physical problem about the cloud cavitating flow that surrounds an underwater-launched hydrofoil near the free surface at relatively high-Froude number, which has not been discussed in the previous research. A water tank experiment and computational fluid dynamics (CFD) simulation are conducted in this paper. The results agree well with each other. The cavity evolution process in the experiment involves three stages, namely, cavity growth, shedding, and collapse. Numerical methods adopt large eddy simulation (LES) with Cartesian cut-cell mesh. Given that the speed of the model changes during the experiment, this paper examines cases with varying constant speeds. The free surface effects on the cavity, re-entry jet location, and vortex structures are analyzed based on the numerical results.

References

1.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
2.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Peng
,
X.
,
Ji
,
B.
,
Cao
,
Y.
,
Xu
,
L.
,
Zhang
,
G.
,
Luo
,
X.
, and
Long
,
X.
,
2016
, “
Combined Experimental Observation and Numerical Simulation of the Cloud Cavitation With U-Type Flow Structures on Hydrofoils
,”
Int. J. Multiphase Flow
,
79
, pp.
10
22
.
4.
Wei
,
Y.
,
Wang
,
Y.
,
Fang
,
X.
,
Huang
,
C.
, and
Duan
,
Z.
,
2011
, “
A Scaled Underwater Launch System Accomplished by Stress Wave Propagation Technique
,”
Chin. Phys. Lett.
,
28
(
2
), p.
024601
.
5.
Kanfoudi
,
H.
,
Lamloumi
,
H.
, and
Zgolli
,
R.
,
2012
, “
Numerical Investigation for Steady and Unsteady Cavitating Flows
,”
Advances in Modeling of Fluid Dynamics
, InTech, Rijeka, Croatia.
6.
Wu
,
Q.
,
Huang
,
B.
, and
Wang
,
G.
,
2015
, “
Numerical Simulation of Transient Flows Around a 3D Pitching Hydrofoil
,”
Adv. Mech. Eng.
,
7
(
2
), p.
808034
.
7.
Wang
,
Y.
,
Huang
,
C.
,
Fang
,
X.
,
Yu
,
X.
,
Wu
,
X.
, and
Du
,
T.
,
2016
, “
Cloud Cavitating Flow Over a Submerged Axisymmetric Projectile and Comparison Between Two-Dimensional RANS and Three-Dimensional Large-Eddy Simulation Methods
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061102
.
8.
Yu
,
X.
,
Huang
,
C.
,
Du
,
T.
,
Liao
,
L.
,
Wu
,
X.
,
Zheng
,
Z.
, and
Wang
,
Y.
,
2014
, “
Study of Characteristics of Cloud Cavity Around Axisymmetric Projectile by Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051303
.
9.
Bensow
,
R. E.
, and
Bark
,
G.
,
2010
, “
Implicit LES Predictions of the Cavitating Flow on a Propeller
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041302
.
10.
Pendar
,
M.-R.
, and
Roohi
,
E.
,
2016
, “
Investigation of Cavitation Around 3D Hemispherical Head-Form Body and Conical Cavitators Using Different Turbulence and Cavitation Models
,”
Ocean Eng.
,
112
, pp.
287
306
.
11.
Hidalgo
,
V.
,
Luo
,
X.
,
Escaler
,
X.
,
Ji
,
J.
, and
Aguinaga
,
A.
, 2014, “
Numerical Investigation of Unsteady Cavitation Around a NACA 66 Hydrofoil Using OpenFOAM
,”
J. Phys.: Conf. Ser.
,
22
, p.
052013
.
12.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
, 2015, “
Large Eddy Simulation of Turbulent Cavitating Flows
,”
J. Phys. Conf. Ser.
,
656
(1), p.
012135
.
13.
Egerer
,
C. P.
,
Schmidt
,
S. J.
,
Hickel
,
S.
, and
Adams
,
N. A.
,
2016
, “
Efficient Implicit LES Method for the Simulation of Turbulent Cavitating Flows
,”
J. Comput. Phys.
,
316
, pp.
453
469
.
14.
Egerer
,
C. P.
,
Hickel
,
S.
,
Schmidt
,
S. J.
, and
Adams
,
N. A.
,
2014
, “
Large-Eddy Simulation of Turbulent Cavitating Flow in a Micro Channel
,”
Phys. Fluids
,
26
(
8
), p.
085102
.
15.
Ma
,
J.
,
Hsiao
,
C.-T.
, and
Chahine
,
G. L.
,
2015
, “
Shared-Memory Parallelization for Two-Way Coupled Euler–Lagrange Modeling of Cavitating Bubbly Flows
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121106
.
16.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
,
2016
, “
Numerical Investigation of Near-Wake Characteristics of Cavitating Flow Over a Circular Cylinder
,”
J. Fluid Mech.
,
790
, pp.
453
491
.
17.
Kim
,
J.
, and
Lee
,
J. S.
,
2015
, “
Numerical Study of Cloud Cavitation Effects on Hydrophobic Hydrofoils
,”
Int. J. Heat Mass Transfer
,
83
, pp.
591
603
.
18.
Hidalgo
,
V.
,
Luo
,
X.-W.
,
Escaler
,
X.
,
Bin
,
J.
, and
Aguinaga
,
A.
,
2015
, “
Implicit Large Eddy Simulation of Unsteady Cloud Cavitation Around a Plane-Convex Hydrofoil
,”
J. Hydrodyn, Ser. B
,
27
(
6
), pp.
815
823
.
19.
Chen
,
Y.
,
Chen
,
X.
,
Gong
,
Z.
,
Li
,
J.
, and
Lu
,
C.
,
2016
, “
Numerical Investigation on the Dynamic Behavior of Sheet/Cloud Cavitation Regimes Around Hydrofoil
,”
Appl. Math. Model.
,
40
(
11
), pp.
5835
5857
.
20.
Ji
,
B.
,
Luo
,
X.
,
Peng
,
X.
,
Wu
,
Y.
, and
Xu
,
H.
,
2012
, “
Numerical Analysis of Cavitation Evolution and Excited Pressure Fluctuation Around a Propeller in Non-Uniform Wake
,”
Int. J. Multiphase Flow
,
43
, pp.
13
21
.
21.
Li
,
L.
,
Jia
,
Q.
,
Liu
,
Z.
,
Li
,
B.
,
Hu
,
Z.
, and
Lin
,
Y.
, 2015, “
Eulerian Two-Phase Modeling of Cavitation for High-Speed UUV Using Different Turbulence Models
,”
IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems
(
CYBER
),
Shenyang, China
,
June 8–12
, pp.
1247
1252
.
22.
Ji
,
B.
,
Peng
,
X.
,
Long
,
X.
,
Luo
,
X.
, and
Wu
,
Y.
, 2015, “
Numerical Evaluation of Cavitation Shedding Structure Around 3D Hydrofoil: Comparison of PANS, LES and RANS Results With Experiments
,”
J. Phys. Conf. Ser.
,
656
(1), p.
012127
.
23.
Akcabay
,
D. T.
, and
Young
,
Y. L.
,
2014
, “
Influence of Cavitation on the Hydroelastic Stability of Hydrofoils
,”
J. Fluids Struct.
,
49
, pp.
170
185
.
24.
Faltinsen
,
O. M.
,
2005
,
Hydrodynamics of High Speed Marine Vehicles
,
Cambridge University Press
,
Cambridge, UK
.
25.
Faltinsen
,
O. M.
, and
Semenov
,
Y. A.
,
2008
, “
The Effect of Gravity and Cavitation on a Hydrofoil Near the Free Surface
,”
J. Fluid Mech.
,
597
, pp.
371
394
.
26.
Bal
,
S.
, and
Kinnas
,
S.
,
2002
, “
A BEM for the Prediction of Free Surface Effects on Cavitating Hydrofoils
,”
Comput. Mech.
,
28
(
3–4
), pp.
260
274
.
27.
Bal
,
S.
,
2007
, “
High-Speed Submerged and Surface Piercing Cavitating Hydrofoils, Including Tandem Case
,”
Ocean Eng.
,
34
(
14
), pp.
1935
1946
.
28.
Bal
,
S.
,
2011
, “
The Effect of Finite Depth on 2D and 3D Cavitating Hydrofoils
,”
J. Mar. Sci. Technol.
,
16
(
2
), pp.
129
142
.
29.
Wang
,
Y.
,
Wu
,
X.
,
Huang
,
C.
, and
Wu
,
X.
,
2016
, “
Unsteady Characteristics of Cloud Cavitating Flow Near the Free Surface Around an Axisymmetric Projectile
,”
Int. J. Multiphase Flow
,
85
, pp.
48
56
.
30.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
,
2015
, “
A Numerical Method to Simulate Turbulent Cavitating Flows
,”
Int. J. Multiphase Flow
,
70
, pp.
22
34
.
31.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
,
2016
, “
Large Eddy Simulation of the Transition From Sheet to Cloud Cavitation Over a Wedge
,”
Int. J. Multiphase Flow
,
83
, pp.
86
102
.
32.
Harwood
,
C.
,
Young
,
Y.
, and
Ceccio
,
S.
,
2016
, “
Ventilated Cavities on a Surface-Piercing Hydrofoil at Moderate Froude Numbers: Cavity Formation, Elimination, and Stability
,”
J. Fluid Mech.
,
800
, pp.
5
56
.
33.
Young
,
Y. L.
,
Harwood
,
C. M.
, Miguel Montero, F.,
Ward
,
J. C.
, and
Ceccio
,
S. L.
,
2017
, “
Ventilation of Lifting Bodies: Review of the Physics and Discussion of Scaling Relations
,”
ASME Appl. Mech. Rev.
,
69
(
1
), p.
010801
.
34.
Li, K., Wang, A., Mao, L., and Fu, S.,
2013
, “
Shapes and Memory Effects of Natural Supercavitation of Navigating Bodies With Variable Speeds
,”
J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.)
,
41
(6), p.
019
.
35.
Shin
,
B. R.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2001
, “
Numerical Analysis of Cavitating Flow Through a 2-D Decelerating Cascade
,”
Computational Fluid Dynamics 2000
,
Springer
,
Berlin
, pp.
651
656
.
36.
Chen
,
Y.
,
Lu
,
C.
,
Chen
,
X.
, and
Cao
,
J.
,
2015
, “
Numerical Investigation on the Cavitation Collapse Regime Around the Submerged Vehicles Navigating With Deceleration
,”
Eur. J. Mech. B: Fluids
,
49
, pp.
153
170
.
37.
Wang
,
Y.
,
Huang
,
C.
,
Fang
,
X.
,
Wu
,
X.
, and
Du
,
T.
,
2016
, “
On the Internal Collapse Phenomenon at the Closure of Cavitation Bubbles in a Deceleration Process of Underwater Vertical Launching
,”
Appl. Ocean Res.
,
56
, pp.
157
165
.
38.
Zwart
,
P.
,
Gerber
,
A.
, and
Belarmri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multi-Phase Flow
(ICMF),
Yokohama, Japan
,
May 30–June 4
.
39.
Berger
,
M. J.
,
Aftosmis
,
M. J.
, and
Allmaras
,
S.
,
2012
, “
Progress Towards a Cartesian Cut-Cell Method for Viscous Compressible Flow
,”
AIAA
Paper No. 1301.
40.
Günther
,
C.
,
Hartmann
,
D.
,
Schneiders
,
L.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2011
, “
A Cartesian Cut-Cell Method for Sharp Moving Boundaries
,”
AIAA
Paper No. 3387.
41.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Stanford University, Stanford, CA, Report No.
N89-24555
.
42.
Ji
,
B.
,
Luo
,
X.
,
Peng
,
X.
, and
Wu
,
Y.
,
2013
, “
Three-Dimensional Large Eddy Simulation and Vorticity Analysis of Unsteady Cavitating Flow Around a Twisted Hydrofoil
,”
J. Hydrodyn., Ser. B
,
25
(
4
), pp.
510
519
.
43.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.
44.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.
You do not currently have access to this content.