This paper presents an experimental investigation of the flow fields in a centrifugal pump by particle image velocimetry (PIV) technique with two different tracer particles, all designed for the same operating point. In order to systematically analyze the tracking characteristics of tracer particles once used in centrifugal pump by Basset–Boussinesq–Oseen (BBO) equation, aluminum powder (AP, with high density ratio and small diameter) and hollow glass spheres (HGS, with neutral density and large diameter) were selected. The velocity fields obtained for AP and HGS were presented and compared, in order to enhance the understanding of their tracking properties in rotating impeller. The results show that AP and HGS give nearly the same phase-averaged velocity fields except at two small regions. BBO extended equation by the phase average theory in a centrifugal pump was applied to explain the first difference, namely, why the velocity of HGS is higher than that of AP in the low-speed zone. In addition, the mean vorticity distributions for AP and HGS show high strength velocity micelles with different directions of development and dissemination, which causes the second difference in energy exchange. As a consequence, HGS tends to conglomerate closer to the pressure side (PS) near the impeller outlet than AP

References

1.
Si
,
Q. R.
,
Dupont
,
P.
,
Bayeul-Lainé
,
A.-C.
,
Dazin
,
A.
,
Roussette
,
O.
, and
Yuan
,
S. Q.
,
2015
, “
An Experimental Study of the Flow Field Inside the Diffuser Passage of a Laboratory Centrifugal Pump
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061105
.
2.
Shao
,
C. L.
,
Zhou
,
J. F.
,
Gu
,
B. Q.
, and
Cheng
,
W. J.
,
2015
, “
Experimental Investigation of the Full Flow Field in a Molten Salt Pump by Particle Image Velocity
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
104501
.
3.
Shi
,
B. C.
,
Wei
,
J. J.
, and
Zhang
,
Y.
,
2015
, “
Phase Discrimination and a High Accuracy Algorithm for PIV Image Processing of Particle-Fluid Two-Phase Flow Inside High-Speed Rotating Centrifugal Slurry Pump
,”
Flow Meas. Instrum.
,
45
, pp.
93
104
.
4.
Keller
,
J.
,
Blance
,
E.
,
Barrio
,
R.
, and
Parrondo
,
J.
,
2014
, “
PIV Measurements of the Unsteady Flow Structures in a Volute Centrifugal Pump at a High Flow Rate
,”
Exp. Fluids
,
55
(
10
), pp.
1
14
.
5.
Gaetani
,
P.
,
Boccazzi
,
A.
, and
Sala
,
R.
,
2012
, “
Low Field in the Vaned Diffuser of a Centrifugal Pump at Different Vane Setting Angles
,”
ASME J. Fluids Eng.
,
134
(
3
), p.
031101
.
6.
Paone
,
N.
,
Riethmuller
,
M. L.
, and
Van Den Braembussche
,
R. A.
,
1989
, “
Experimental Investigation of the Flow in the Vaneless Diffuser of a Centrifugal Pump by Particle Image Displacement Velocimetry
,”
Exp. Fluids
,
7
(
6
), pp.
371
378
.
7.
Akin
,
O.
, and
Rockwell
,
D.
,
1994
, “
Flow Structure in a Radial Flow Pumping System Using High-Image-Density Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
538
544
.
8.
Dong
,
R.
,
Chu
,
S.
, and
Kaze
,
J.
,
1992
, “
Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part A: Technique
,”
ASME J. Fluids Eng.
,
114
(
3
), pp.
390
395
.
9.
Dong
,
R.
,
Chu
,
S.
, and
Kaze
,
J.
,
1997
, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump
,”
ASME J. Turbomach.
,
119
(
3
), pp.
506
515
.
10.
Chu
,
S.
,
Dong
,
R.
, and
Kaze
,
J.
,
1995
, “
Relationship Between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part A: Use of PDV Data to Compute the Pressure Field
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
24
29
.
11.
Sinha
,
M.
, and
Katz
,
J.
,
2000
, “
Quantitative Visualization of the Flow in a Centrifugal Pump With Diffuser Vanes-I: On Flow Structures and Turbulence
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
97
107
.
12.
Sinha
,
M.
,
Pinarbasi
,
A.
, and
Katz
,
J.
,
2001
, “
The Flow Structure During Onset and Developed States of Rotating Stall Within a Vaned Diffuser of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
490
499
.
13.
Pedersen
,
N.
,
Laresn
,
P. S.
, and
Jacobsen
,
C. B.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and off Design Conditions Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
61
72
.
14.
Krause
,
N.
,
Zaehringer
,
K.
, and
Pap
,
E.
,
2005
, “
Time-Resolved Particle Imaging Velocimetry for the Investigation of Rotating Stall in a Radial Pump
,”
Exp. Fluids.
,
39
(
2
), pp.
192
201
.
15.
Krause
,
N.
,
Pap
,
E.
, and
Thevenin
,
D.
,
2006
, “
Investigation of Off-Design Conditions in a Radial Pump by Using Time-Resolved-PIV
,”
13th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, June 26–29, pp.
1
11
.
16.
Wu
,
Y. L.
,
Liu
,
S. H.
,
Yuan
,
H. J.
, and
Shao
,
J.
,
2011
, “
PIV Measurement on Internal Instantaneous Flows of a Centrifugal Pump
,”
Sci. China Technol. Sci.
,
54
(
2
), pp.
270
276
.
17.
Kadambi
,
J. R.
,
Charoenngam
,
P.
,
Subramanian
,
A.
,
Wernet
,
M. P.
,
Sankovic
,
J. M.
,
Addie
,
G.
, and
Courtwright
,
R.
,
2004
, “
Investigations of Particle Velocities in a Slurry Pump Using PIV: Part 1: The Tongue and Adjacent Channel Flow
,”
ASME J. Energy Resour. Technol.
,
126
(
4
), pp.
271
277
.
18.
Choi
,
Y.-D.
,
Kurokawa
,
J.
,
Nishino
,
K.
,
Matsui
,
J.
, and
Imamura
,
H.
,
2002
, “
Internal Flow Measurement of a Very Low Specific-Speed Centrifugal Pump by PIV
,”
10th International Symposium on Flow Visualization
,
Kyoto, Japan
, Paper No. F0221.
19.
Choi
,
Y.-D.
,
Nishino
,
K.
,
Kurokawa
,
J.
, and
Matsui
,
J.
,
2004
, “
PIV Measurement of Internal Flow Characteristics of Very Low Specific Speed Semi-Open Impeller
,”
Exp. Fluids.
,
37
(
5
), pp.
617
630
.
20.
Choi
,
Y.-D.
,
Kurokawa
,
J.
, and
Matsui
,
J.
,
2006
, “
Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
341
349
.
21.
Westra
,
R. W.
,
Broersma
,
L.
,
Van Andel
,
K.
, and
Kruyt
,
N. P.
,
2010
, “
PIV Measurements and CFD Computations of Secondary Flow in a Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061104
.
22.
Feng
,
J.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2009
, “
Comparison of Periodic Flow Field in a Radial Pump Among CFD, PIV and LDV Results
,”
Int. J. Rotating Mach.
,
2009
, pp.
1
10
.
23.
Visser
,
F. C.
, and
Jonker
,
J. B.
,
1995
, “
Investigation of the Relative Flow in Low Specific Speed Model Centrifugal Pump Impellers Using Sweep-Beam Particle Image Velocity
,”
7th International Symposium on Flow Visualization
,
Seattle, WA
, pp.
654
659
.
24.
Agui
,
J. C.
, and
Jimenez
,
J.
,
1987
, “
On the Performance of Particle Tracking
,”
J. Fluid Mech.
,
185
, pp.
447
468
.
25.
Adrian
,
R. J.
,
1991
, “
Particle Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
261
304
.
26.
Hjelmfel
,
A. T.
, Jr.
, and
Mockros
,
L. F.
,
1966
, “
Motion of Discrete Particles in a Turbulent Fluid
,”
Appl. Sci. Res.
,
16
(
1
), pp.
149
161
.
27.
Adrian
,
R. J.
,
2005
, “
Twenty Years of Particle Image Velocimetry
,”
Exp. Fluids
,
39
(
2
) pp.
159
169
.
28.
Mei
,
R.
,
1996
, “
Velocity Fidelity of Flow Tracer Particles
,”
Exp. Fluids
,
22
(
1
), pp.
1
13
.
29.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocity
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
.
30.
Tedeschi
,
G.
,
Gouin
,
H.
, and
Elena
,
M.
,
1999
, “
Motion of Tracer Particles in Superspnic Flows
,”
Exp. Fluids.
,
26
(
4
), pp.
288
296
.
31.
Zhang
,
T.
,
Celik
,
D.
, and
Van Sciver
,
S. W.
,
2004
, “
Tracer Particles for Application to PIV Studies of Liquid Helium
,”
J. Low Temp. Phys.
,
134
(
3–4
), pp.
985
1000
.
32.
Zhang
,
T.
, and
Van Sciver
,
S. W.
,
2005
, “
The Motion of Micron-Sized Particles in He II Counterflow as Observed by the PIV Technique
,”
J. Low Temp. Phys.
,
138
(
3–4
), pp.
865
870
.
33.
Li
,
Y.-L.
,
Yuan
,
S.-Q.
,
Tang
,
Y.
, and
Yuan
,
J. P.
,
2012
, “
Motion of Tracer Particles in a Centrifugal Pump and Its Tracking Characteristics
,”
J. Hydrodyn., Ser. B
,
24
(
5
), pp.
785
793
.
34.
Liu
,
H. L.
,
Wang
,
K.
,
Yuan
,
S. Q.
,
Tan
,
M. G.
,
Wang
,
Y.
, and
Dong
,
L.
,
2013
, “
Multicondition Optimization and Experimental Measurements of a Double-Blade Centrifugal Pump Impeller
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011103
.
35.
Liu
,
H. L.
,
Wang
,
K.
,
Yuan
,
S. Q.
,
Tan
,
M. G.
,
Wang
,
Y.
, and
Ru
,
W. M.
,
2012
, “
3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller
,”
Chin. J. Mech. Eng.
,
25
(
3
), pp.
491
497
.
36.
Liu
,
H. L.
,
Wang
,
K.
,
Kim
,
H.-B.
, and
Tan
,
M. G.
,
2013
, “
Experimental Investigation of the Unsteady Flow in a Double-Blade Centrifugal Pump Impeller
,”
Sci. China Technol. Sci.
,
56
(
4
), pp.
812
817
.
37.
Liu
,
H.-L.
,
Ren
,
Y.
,
Wang
,
K.
,
Wu
,
D.-H.
,
Ru
,
W.-M.
, and
Tan
,
M.-G.
,
2012
, “
Research of Inner Flow in a Double Blades Pump Based on OpenFOAM
,”
J. Hydrodyn., Ser. B
,
24
(
2
), pp.
226
234
.
38.
Ren
,
Y.
,
Liu
,
H. L.
,
Wang
,
K.
,
Tan
,
M. G.
,
Wu
,
D. H.
, and
Yang
,
H. B.
,
2012
, “
Numerical Simulation of Inner Flow in a Double Blades Pump Based on OpenFOAM and Its PIV Verification
,”
ASME
Paper No. FEDSM2012-72037.
39.
Davies
,
J. T.
,
1972
,
Turbulence Phenomena
,
Academic Press
,
New York/London,
pp.
56
58
.
40.
Dazin
,
A.
,
Cavazzini
,
G.
,
Pavesi
,
G.
,
Dupont
,
P.
,
Coudert
,
S.
,
Ardizzon
,
G.
,
Caignaert
,
G.
, and
Bois
,
G.
,
2011
, “
High-Speed Stereoscopic PIV Study of Rotating Instabilities in a Radial Vaneless Diffuser
,”
Exp. Fluids
,
51
(
1
), pp.
83
93
.
You do not currently have access to this content.