In this paper, a three-dimensional (3D) computational fluid dynamics (CFD) methodology to improve the performance of hydraulic components will be shown, highlighting the importance that a study in the fluid mechanics field has for their optimization. As known, the valve internal geometry influences proportional spool valve hydraulic performance, axial flow forces, and spin effects on the spool. Axial flow forces and spin effects interact directly with the position control performance of a direct actuating closed-loop control valve, reducing its capability. The goal of this activity is the study of the torque on the spool induced by the flow and using a CFD 3D methodology to identify causes of this phenomenon and to find a general mathematical solution to minimize the spool spin effect. The baseline configuration and the new ones of the proportional four-way three-position closed-loop control spool valve have been studied with a mathematical model. The models were also validated by the experimental data performed in the Hydraulic Lab of the University of Naples. In particular, the tests allowed to measure the torque on the spool varying the oil flow rate, using a dedicated test bench layout where the spool was directly connected to a torque meter. Several geometries have been analyzed to find the best one to minimize spool spin behavior while maintaining an acceptable pressure drop. The study results confirmed the significant improvement of overall component performance.

References

1.
Amirante
,
R.
,
Moscatelli
,
P. G.
, and
Catalano
,
L. A.
,
2007
, “
Evaluation of the Flow Forces on a Direct (Single Stage) Proportional Valve by Means of a Computational Fluid Dynamic Analysis
,”
Energy Convers. Manage.
,
48
(
3
), pp.
942
953
.
2.
Valdés
,
J. R.
,
Miana
,
M. J.
,
Núñeza
,
J. L.
, and
Pützb
,
T.
,
2008
, “
Reduced Order Model for Estimation of Fluid Flow and Flow Forces in Hydraulic Proportional Valves
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1517
1529
.
3.
Amirante
,
R.
,
Catalano
,
L. A.
, and
Tamburrano
,
P.
,
2014
, “
The Importance of a Full 3D Fluid Dynamic Analysis to Evaluate the Flow Forces in a Hydraulic Directional Proportional Valve
,”
Eng. Comput.
,
31
(
5
), pp.
898
922
.
4.
Lisowski
,
E.
,
Czyzycki
,
W.
, and
Rajda
,
J.
,
2013
, “
Three Dimensional CFD Analysis and Experimental Test of Flow Force Acting on the Spool of Solenoid Operated Directional Control Valve
,”
Energy Convers. Manage.
,
70
, pp.
220
229
.
5.
Amirante
,
R.
,
Del Vescovo
,
G.
, and
Lippolis
,
A.
,
2006
, “
Flow Forces Analysis of an Open Center Hydraulic Directional Control Valve Sliding Spool
,”
Energy Convers. Manage.
,
47
(
1
), pp.
114
131
.
6.
Plau-Salvador
,
G.
,
Gonzalez-Altozano
,
P.
, and
Arviza-Valverde
,
J.
,
2008
, “
Three-Dimensional Modeling and Geometrical Influence on the Hydraulic Performance of a Control Valve
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011102
.
7.
Amirante
,
R.
,
Catalano
,
L. A.
,
Tamburrano
,
P.
, and
Poloni
,
L. A.
,
2014
, “
Fluid-Dynamic Design Optimization of Hydraulic Proportional Directional Valves
,”
Eng. Optim.
,
46
(
10
), pp.
1295
1314
.
8.
Lee
,
G. S.
,
Sung
,
H. J.
, and
Kim
,
H. C.
,
2013
, “
Multiphysics Analysis of a Linear Control Solenoid Valve
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011104
.
9.
Jin
,
B.
,
Zhu
,
Y. G.
,
Li
,
W.
,
Zhang
,
D. S.
,
Zhang
,
L. L.
, and
Chen
,
F. F.
,
2014
, “
A Differential Control Method for the Proportional Directional Valve
,”
J. Zhejiang Univ., Sci., C
,
15
(
10
), pp.
892
902
.
10.
Canuto
,
E.
,
Acuna-Bravo
,
W.
,
Agostani
,
M.
, and
Bonadei
,
M.
,
2014
, “
Digital Current Regulator for Proportional Electro-Hydraulic Valves With Unknown Disturbance Rejection
,”
ISA Trans.
,
53
(
4
), pp.
909
9019
.
11.
Jia
,
W. H.
,
Yin
,
C. B.
, and
Cao
,
D. H.
,
2014
, “
Research of Median-Nonlinear Flow of Proportional Valve
,”
International Conference on Advanced Engineering Materials and Architecture Science, ICAEMAS
,
Xi'an, China
, Jan. 4–5, Vol.
488
, pp.
1231
1234
.
12.
Ding
,
C.
,
Ding
,
F.
,
Zhou
,
X.
,
Liu
,
S.
, and
Yang
,
C. J.
,
2013
, “
Novel Pressure-Resistant Oil-Immersed Proportional Actuator for Electrohydraulic Proportional Control Valve
,”
ASME J. Mech. Des.
,
135
(
12
), p.
125001
.
13.
Valdes
,
J. R.
,
Miana
,
M. J.
,
Nunez
,
J. L.
, and
Putz
,
T.
,
2008
, “
Reduced Order Model for Estimation of Fluid Flow and Flow Forces in Hydraulic Proportional Valves
,”
Energy Convers. Manage.
,
49
(
6
), pp.
1517
1529
.
14.
Senatore
,
A.
,
Cardone
,
M.
,
Buono
,
D.
, and
Balsamo
,
F.
,
2008
, “
Experimental Analysis of a Ship Stabilization Hydraulic System
,”
TEHNONAV International Conference
,
Constanta, Romania
, May 22–24, Vol.
X
(
I
).
15.
Lee
,
G. S.
,
Sung
,
H. J.
, and
Kim
,
H. C.
,
2010
, “
Flow Force Analysis of a Variable Force Solenoid Valve for Automatic Transmissions
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
031103
.
16.
Liu
,
Y.-F.
,
Dai
,
Z.-K.
,
Xu
,
X.-Y.
, and
Tian
,
L.
,
2011
, “
Multi-Domain Modeling and Simulation of Proportional Solenoid Valve
,”
J. Cent. South Univ. Technol.
,
18
(
5
), pp.
1589
1594
.
17.
Watton
,
J.
, and
Tadmori
,
M. J.
,
1988
, “
A Comparison of Techniques for the Analysis of Transmission Line Dynamics in Electrohydraulic Control Systems
,”
Appl. Math. Modell.
,
12
(
5
), pp.
457
466
.
18.
Min
,
B.
,
Xin
,
F.
, and
Ying
,
C.
,
2001
, “
Computational Fluid Dynamics Approach to Pressure Loss Analysis of Hydraulic Spool Valve
,”
5th International Conference on Fluid Power Transmission and Control
,
Nara, Japan
, Nov. 13–14, pp.
467
471
.
19.
Senatore
,
A.
,
Buono
,
D.
,
Frosina
,
E.
, and
Manganelli
,
M. U.
,
2014
, “
A Tridimensional CFD Analysis of the Oil Pump of a High Performance Motorbike Engine
,”
Energy Procedia
,
45
, pp.
938
948
.
20.
Gamboa
,
A. R.
,
Morris
,
C. J.
, and
Forster
,
F. K.
,
2004
, “
Improvements in Fixed-Valve Micropump Performance Through Shape Optimization of Valves
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
339
346
.
21.
Rannow
,
M. B.
, and
Li
,
P. Y.
,
2012
, “
Soft Switching Approach to Reducing Transition Losses in an On/Off Hydraulic Valve
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
6
), p.
064501
.
22.
Yuan
,
Q. H.
, and
Li
,
P. Y.
,
2007
, “
Robust Optimal Design of Unstable Valves
,”
IEEE Trans. Control Syst. Technol.
,
15
(
6
), pp.
1065
1074
.
23.
Davis
,
J. A.
, and
Stewart
,
M.
,
2002
, “
Predicting Globe Control Valve Performance—Part II: Experimental Verification
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
778
783
.
24.
Manring
,
N. D.
,
2004
, “
Modeling Spool-Valve Flow Forces
,”
ASME
Paper No. IMECE2004-59038.
25.
Manring
,
N. D.
, and
Zhang
,
S.
,
2011
, “
Pressure Transient Flow Forces for Hydraulic Spool Valves
,”
ASME J. Dyn. Syst., Meas., Control
,
134
(
3
), p.
034501
.
26.
Morita
,
R.
,
Inada
,
F.
,
Mori
,
M.
,
Tezuka
,
K.
, and
Tsujimoto
,
Y.
,
2006
, “
CFD Simulations and Experiments of Flow Fluctuations Around a Steam Control Valve
,”
ASME J. Fluids Eng
,
129
(
1
), pp.
48
54
.
27.
Senatore
,
A.
,
Buono
,
D.
,
Frosina
,
E.
,
Pavanetto
,
M.
,
Contin
,
I.
, and
Olivetti
,
M.
,
2014
, “
Improving the Performance of a Two Way Flow Control Valve, Using a 3D CFD Modeling
,”
ASME
Paper No. IMECE2014-38201.
28.
Schleihs
,
C.
,
Viennet
,
E.
,
Deeken
,
M.
,
Ding
,
H.
,
Xia
,
Y.
,
Lowry
,
S.
, and
Murrenhoff
,
H.
,
2014
, “
3D-CFD Simulation of an Axial Piston Displacement Unit
,”
9th International Fluid Power Conference, IFK 9
,
Aachen, Germany
, Mar. 24–26, pp.
332
343
.
29.
Ding
,
H.
,
Lu
,
X. J.
, and
Jiang
,
B.
,
2006
, “
A CFD Model for Orbital Gerotor Motor
,”
26th IAHR Symposium on Hydraulic Machinery and Systems
, Vol.
15
.
30.
Franzoni
,
F.
,
Milani
,
M.
, and
Montorsi
,
L.
,
2007
, “
CFD Multidimensional Approach to Hydraulic Components Design
,” SAE Technical Paper No. 2007-01-4196.
31.
Davis
,
J. A.
, and
Stewart
,
M.
,
2002
, “
Predicting Globe Control Valve Performance—Part I: CFD Modeling
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
772
777
.
32.
Leutwyler
,
Z.
, and
Dalton
,
C.
,
2006
, “
A Computational Study of Torque and Forces Due to Compressible Flow on a Butterfly Valve Disk in Mid-Stroke Position
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1074
1082
.
You do not currently have access to this content.