A bounded vortex flow is generated by a nozzle with a central suction outlet surrounded by inlet jets with a 15 deg inclination in the azimuthal direction. The jets impinge on a flat surface called the impingement surface. The circulation introduced by azimuthal tilting of the inlet jets is concentrated at the flow centerline by the suction outlet to form a wall-normal vortex, with axis nominally orthogonal to the impingement surface. An experimental study was conducted in water to examine the structure and dynamics of bounded vortex flows with balanced inlet and outlet flow rates for different values of the separation distance h between the nozzle face and the impingement surface. The experiments used a combination of laser-induced fluorescence (LIF) to visualize the vortex and jet flow structure and particle-image velocimetry (PIV) for quantitative velocity measurements along a planar slice of the flow. Different liquid flow rates were examined for each separation distance. The results show that a stationary wall-normal vortex is formed at small separation distances, such as when the ratio of h to the inlet jet radial position R is set to h/R=0.67. When the separation distance is increased such that h/R=1.3, the intake vortex first becomes asymmetric, drifting to the one side of the flow, and then bifurcates into a vortex pair that rotates in a V-state around the flow centroid. At large separation distances (e.g., h/R=6.7), the intake vortex adopts a spiral structure that is surrounded by the inlet jets, with upward-flowing exterior fluid at the center of the spiral vortex structure. The arms of this spiral are advected downward with time by the inlet jet flow until they reach the impingement surface. Knowledge of this flow structure at different separation distances is necessary in order to design systems that utilize this flow field for enhancement of particle removal rate or heat/mass transfer from a surface.

References

1.
Masuda
,
H.
,
Gotoh
,
K.
,
Fukada
,
H.
, and
Banba
,
Y.
,
1994
, “
The Removal of Particles From Flat Surfaces Using a High-Speed Air Jet
,”
Adv. Powder Technol.
,
5
(
2
), pp.
205
217
.10.1016/S0921-8831(08)60615-9
2.
Anderson
,
S. L.
, and
Longmire
,
E. K.
,
1995
, “
Particle Motion in the Stagnation Zone of an Impinging Air Jet
,”
J. Fluid Mech.
,
299
, pp.
333
366
.10.1017/S0022112095003521
3.
Otani
,
Y.
,
Namiki
,
N.
, and
Emi
,
H.
,
1995
, “
Removal of Fine Particles From Smooth Flat Surfaces by Consecutive Pulse Air Jets
,”
Aerosol Sci. Technol.
,
23
(
4
), pp.
665
673
.10.1080/02786829508965346
4.
Zhang
,
X. W.
,
Yao
,
Z. H.
,
Hao
,
P. F.
, and
Xu
,
H. Q.
,
2002
, “
Study on Particle Removal Efficiency of an Impinging Jet by an Image-Processing Method
,”
Exp. Fluids
,
32
(
3
), pp.
376
380
.10.1007/s003480100368
5.
Ziskind
,
G.
,
Yarin
,
L. P.
,
Peles
,
S.
, and
Gutfinger
,
C.
,
2002
, “
Experimental Investigation of Particle Removal From Surfaces by Pulsed Air Jets
,”
Aerosol Sci. Technol.
,
36
(
5
), pp.
652
659
.10.1080/02786820252883883
6.
Chiriac
, V
. A.
, and
Ortega
,
A.
,
2002
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
(
6
), pp.
1237
1248
.10.1016/S0017-9310(01)00224-1
7.
Wen
,
M. Y.
, and
Jang
,
K. J.
,
2003
, “
An Impingement Cooling on a Flat Surface by Using Circular Jet With Longitudinal Swirling Strips
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4657
4667
.10.1016/S0017-9310(03)00302-8
8.
Chattopadhyay
,
H.
,
2004
, “
Numerical Investigations of Heat Transfer From Impinging Annular Jet
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3197
3201
.10.1016/j.ijheatmasstransfer.2004.02.011
9.
Lee
,
H. G.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2008
, “
A Numerical Investigation on the Fluid Flow and Heat Transfer in the Confined Impinging Slot Jet in the Low Reynolds Number Region for Different Channel Heights
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
4055
4068
.10.1016/j.ijheatmasstransfer.2008.01.015
10.
Krasheninnikov
,
S. Y.
, and
Pudovikov
,
D. E.
,
2007
, “
Induced Flow and Ascent of Heavy Particles When an Air Intake Operates Near a Surface
,”
Fluid Dyn.
,
42
(
4
), pp.
654
665
.10.1134/S0015462807040151
11.
Kaftori
,
D.
,
Hetsroni
,
G.
, and
Banerjee
,
S.
,
1995
, “
Particle Behavior in the Turbulent Boundary Layer. I. Motion, Deposition, and Entrainment
,”
Phys. Fluids
,
7
(
5
), pp.
1095
1106
.10.1063/1.868551
12.
Kaftori
,
D.
,
Hetsroni
,
G.
, and
Banerjee
,
S.
,
1995
, “
Particle Behavior in the Turbulent Boundary Layer. II. Velocity and Distribution Profiles
,”
Phys. Fluids
,
7
(
5
), pp.
1107
1121
.10.1063/1.868552
13.
Dritselis
,
C. D.
, and
Vlachos
,
N. S.
,
2008
, “
Numerical Study of Educed Coherent Structures in the Near-Wall Region of a Particle-Laden Channel Flow
,”
Phys. Fluids
,
20
(
5
), p.
055103
.10.1063/1.2919108
14.
Munro
,
R. J.
,
Bethke
,
N.
, and
Dalziel
,
S. B.
,
2009
, “
Sediment Resuspension and Erosion by Vortex Rings
,”
Phys. Fluids
,
21
(
4
), p.
046601
.10.1063/1.3083318
15.
Sutherland
,
A. J.
,
1967
, “
Proposed Mechanism for Sediment Entrainment by Turbulent Flows
,”
J. Geophys. Res.
,
72
(
24
), pp.
6183
6194
.10.1029/JZ072i024p06183
16.
Jackson
,
R. G.
,
1976
, “
Sedimentological and Fluid-Dynamic Implications of the Turbulent Bursting Phenomenon in Geophysical Flows
,”
J. Fluid Mech.
,
77
(
3
), pp.
531
560
.10.1017/S0022112076002243
17.
Onslow
,
R. J.
,
Thomas
,
N. H.
, and
Whitehouse
,
R. J. S.
,
1993
, “
Vorticity and Sandwaves: The Dynamics of Ripples and Dunes
,”
Turbulence: Perspectives on Flow and Sediment Transport
,
N. J.
Clifford
,
J. R.
French
, and
J.
Hardisty
, eds.,
Wiley
,
New York
.
18.
Long
,
R. R.
,
1961
, “
A Vortex in an Infinite Viscous Fluid
,”
J. Fluid Mech.
,
11
(
4
), pp.
611
624
.10.1017/S0022112061000767
19.
Burggraf
,
O. R.
,
Stewartson
,
K.
, and
Belcher
,
R.
,
1971
, “
Boundary Layer Induced by a Potential Vortex
,”
Phys. Fluids
,
14
(
9
), pp.
1821
1833
.10.1063/1.1693691
20.
Belcher
,
R. J.
,
Burggraf
,
O. R.
, and
Stewartson
,
K.
,
1972
, “
On Generalized-Vortex Boundary Layers
,”
J. Fluid Mech.
,
52
(
4
), pp.
753
780
.10.1017/S0022112072002745
21.
Phillips
,
W. R. C.
,
1985
, “
On Vortex Boundary Layers
,”
Proc. R. Soc. A
,
400
(
1819
), pp.
253
261
.10.1098/rspa.1985.0079
22.
Phillips
,
W. R. C.
, and
Khoo
,
B. C.
,
1987
, “
The Boundary Layer Beneath a Rankine-Like Vortex
,”
Proc. R. Soc. A
,
411
(
1840
), pp.
177
192
.10.1098/rspa.1987.0060
23.
Hirsa
,
A.
,
Lopez
,
J. M.
, and
Kim
,
S.
,
2000
, “
Evolution of an Initially Columnar Vortex Terminating Normal to a No-Slip Wall
,”
Exp. Fluids
,
29
(
4
), pp.
309
321
.10.1007/s003489900086
24.
Parras
,
L.
, and
Fernandez-Feria
,
R.
,
2007
, “
Interaction of an Unconfined Vortex With a Solid Surface
,”
Phys. Fluids
,
19
(
6
), p.
067104
.10.1063/1.2737783
25.
Kurosaka
,
M.
,
Christiansen
,
W. H.
,
Goodman
,
J. R.
,
Tirres
,
L.
, and
Wohlman
,
R. A.
,
1988
, “
Crossflow Transport Induced by Vortices
,”
AIAA J.
,
26
(
11
), pp.
1403
1405
.10.2514/3.10054
26.
Cohn
,
R. K.
, and
Koochesfahani
,
M. M.
,
1993
, “
Effect of Boundary Conditions on Axial Flow in a Concentrated Vortex Core
,”
Phys. Fluids A
,
5
(
1
), pp.
280
282
.10.1063/1.858784
27.
Maynard
,
A. B.
, and
Marshall
,
J. S.
,
2011
, “
Particle Removal From a Surface by a Bounded Vortex Flow
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
901
914
.10.1016/j.ijheatfluidflow.2011.07.003
28.
Huang
,
Y.
, and
Marshall
,
J. S.
,
2011
, “
Experiments on Bounded Vortex Flows and Related Particle Transport
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071204
.10.1115/1.4004453
29.
Vachon
,
N.
, and
Hitt
,
D.
,
2010
, “
A Bound Vortex Surface Impingement Method for Adhered Dust Particle Removal
,” 40th
AIAA
Fluid Dynamics Conference and Exhibit
,
Chicago, IL
, June 28–July 1.10.2514/6.2010-4297
30.
Vachon
,
N.
, and
Hitt
,
D.
,
2011
, “
An Experimental Investigation of a Bound Vortex Surface Impingement Method for the Removal of Adhered Dust Particles
,” 41st
AIAA
Fluid Dynamics Conference and Exhibit
,
Honolulu, HI
, June 27–30.10.2514/6.2011-3893
31.
Vachon
,
N.
, and
Hitt
,
D.
,
2012
, “
A Pulsatile Bound Vortex Surface Impingement Method for Dust Particle Removal
,” 42nd
AIAA
Fluid Dynamics Conference and Exhibit
,
New Orleans, LA
, June 25–28.10.2514/6.2012-2853
32.
Vachon
,
N.
, and
Hitt
,
D.
,
2013
, “
Experimental Measurements of Convective Mass Transfer From a Surface Due to a Bound Vortex Flow
,” 43rd
AIAA
Fluid Dynamics Conference and Exhibit
,
San Diego, CA
, June 24–27.10.2514/6.2013-2873
33.
Furhmann
,
A.
,
Marshall
,
J. S.
, and
Wu
,
J.-R.
,
2013
, “
Effect of Acoustic Levitation Force on Aerodynamic Particle Removal From a Surface
,”
Appl. Acoust.
,
74
(
4
), pp.
535
543
.10.1016/j.apacoust.2012.10.009
34.
Kitoh
,
O.
,
1991
, “
Experimental Study of Turbulent Swirling Flow in a Straight Pipe
,”
J. Fluid Mech.
,
225
, pp.
445
479
.10.1017/S0022112091002124
35.
Parchen
,
R. R.
, and
Steenbergen
,
W.
,
1998
, “
An Experimental and Numerical Study of Turbulent Swirling Pipe Flows
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
54
61
.10.1115/1.2819661
36.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2013
, “
Particle and Droplet Deposition in Turbulent Swirled Pipe Flow
,”
Int. J. Multiphase Flow
,
56
, pp.
172
183
.10.1016/j.ijmultiphaseflow.2013.06.002
37.
Saffman
,
P. G.
, and
Szeto
,
R.
,
1980
, “
Equilibrium Shapes of a Pair of Equal Uniform Vortices
,”
Phys. Fluids
,
23
(
12
), pp.
2339
2342
.10.1063/1.862935
38.
Overman
,
E. A.
, and
Zabusky
,
N. J.
,
1982
, “
Evolution and Merger of Isolated Vortex Structures
,”
Phys. Fluids
,
25
(
8
), pp.
1297
1305
.10.1063/1.863907
39.
Burgers
,
J. M.
,
1948
, “
A Mathematical Model Illustrating the Theory of Turbulence
,”
Adv. Appl. Mech.
,
1
, pp.
171
199
.10.1016/S0065-2156(08)70100-5
40.
Bajer
,
K.
, and
Moffatt
,
H. K.
,
1998
, “
Theory of Non-Axisymmetric Burgers Vortex With Arbitrary Reynolds Number
,”
IUTAM Symposium on Dynamics of Slender Vortices
,
E.
Krause
and
K.
Gersten
, eds.,
Kluwer Publishers
,
Aachen
,
Germany
, pp.
193
202
.10.1007/978-94-011-5042-2_16
41.
Alekseenko
,
S. V.
,
Kuibin
,
P. A.
,
Okulov
,
V. L.
, and
Shtork
,
S. I.
,
1999
, “
Helical Vortices in Swirl Flow
,”
J. Fluid Mech.
,
382
, pp.
195
243
.10.1017/S0022112098003772
42.
Mayer
,
E. W.
, and
Powell
,
K. G.
,
1992
, “
Viscous and Inviscid Instabilities of a Trailing Line Vortex
,”
J. Fluid Mech.
,
245
, pp.
91
114
.10.1017/S0022112092000363
43.
Foster
,
M. R.
, and
Smith
,
F. T.
,
1989
, “
Stability of Long’s Vortex at Large Flow Force
,”
J. Fluid Mech.
,
206
, pp.
405
432
.10.1017/S002211208900234X
You do not currently have access to this content.