Turbulent flows of air/water mixtures through curved pipes are modeled in this work using a Eulerian–Eulerian method. This is motivated by the possibility of using computational fluid dynamics (CFD) as a design tool applied to curved pipes feeding a gas/liquid separator. The question is to identify the curvature of such pipes that can promote film formation upstream of the separator and, thus, precondition the flow without creating a large pressure drop. The performance of the mixture theory with a drift flux model and the “realizable” k-ε closure was evaluated in the simulations. The enhanced wall treatment (EWT) was utilized to resolve the flow in the near-wall region. A qualitative study was first conducted to investigate the flow patterns and the liquid film formation in a 180 deg bend. The numerical results were validated by comparing the computed pressure drop with empirical correlations from the literature. Subsequently, the importance of droplet size and liquid volume fraction was investigated by studying their effect on the flow patterns of the continuous phase, as well as their impact on the secondary flow intensity, the pressure drop, and the liquid film formation on the wall. Various pipe geometries were studied to achieve a low pressure drop while maintaining a high droplet deposition. Results show that a combination of the drift flux model with the realizable k-ε closure and EWT for the near-wall treatment appears capable of capturing the complex secondary flow patterns such as those associated with film inversion. The pressure drop computed for various flows appear to be in good agreement with an empirical correlation. Finally, bends with a curvature ratio around 7 appear to be the optimal for providing a small pressure drop as well as a high droplet deposition efficiency in a U-bend.

References

1.
Berger
,
S. A.
,
Talbot
,
A.
, and
Yao
,
L.-S.
,
1983
, “
Flow in Curved Pipes
,”
Ann. Rev. Fluid Mech.
,
15
, pp.
461
512
.10.1146/annurev.fl.15.010183.002333
2.
Zhang
,
P.
,
Roberts
,
R. M.
, and
Bénard
,
A.
,
2012
, “
Computational Guidelines and an Empirical Model for Particle Deposition in Curved Pipes Using an Eulerian-Lagrangian Approach
,”
J. Aerosol Sci.
,
53
, pp.
1
20
.10.1016/j.jaerosci.2012.05.007
3.
Azzopardi
,
B. J.
,
1985
, “
Drop Sizes in Annular Two-phase Flow
,”
Exper. Fluid.
,
3
, pp.
53
59
.10.1007/BF00285271
4.
Fitzsimmons
,
D. E.
,
1964
, “
Two-Phase Pressure Drop in Piping Components
,” HW-80970, Rev. 1, General Electric Hanford Laboratories, Richland, OH.
5.
Hart
,
J.
,
Ellenberger
,
J.
, and
Hamersma
,
P. J.
,
1988
, “
Single- and Two-Phase Flow Through Helically Coiled Tubes
,”
Chem. Eng. Sci.
,
43
,
pp. 775
783
. 10.1016/0009-2509(88)80072-1
6.
Hewitt
,
G. F.
, and
Robertson
,
D. N.
,
1969
, “
Studies of Two-phase Flow Patterns by Simultaneous X-ray and Flash Photography
,” UKAEA, Harwell, Report AERE-M2159.
7.
Hoang
,
K.
, and
Davis
,
M. R.
,
1984
, “
Flow Structure and Pressure Loss for Two-Phase Flow in Return Bends
,”
ASME J. Fluid Eng.
,
106
, pp.
30
37
.10.1115/1.3242398
8.
Guo
,
T.
,
Wang
,
T.
, and
Gaddis
,
J. L.
,
2000
, “
Mist/Steam Cooling in a 180-Degree Tube Bend
,”
ASME J. Heat Transf.
,
122
, pp.
749
756
.10.1115/1.1287794
9.
Breuer
,
M.
,
Baytekin
,
H. T.
, and
Matida
,
E. A.
,
2006
, “
Prediction of Aerosol Deposition in 90° Bends Using LES and an Efficient Lagrangian Tracking Method
,”
J. Aerosol Sci.
,
37
, pp.
1407
1428
.10.1016/j.jaerosci.2006.01.013
10.
Berrouk
,
A. B.
, and
Laurence
,
D.
,
2008
, “
Stochastic Modeling of Aerosol Deposition for LES of 90° Bend Turbulent Flow
,”
Int. J. Heat Fluid Flow
,
29
, pp.
1010
1028
.10.1016/j.ijheatfluidflow.2008.02.010
11.
Matida
,
E. A.
,
Finlay
,
W. H.
,
Lange
,
C. F.
, and
Grgic
,
B.
,
2004
, “
Improved Numerical Simulation of Aerosol Deposition in an Idealized Mouth-Throat
,”
J. Aerosol Sci.
,
35
, pp.
1
19
.10.1016/S0021-8502(03)00381-1
12.
McFarland
,
R. A.
,
Gong
,
H.
,
Muyshondt
,
A.
,
Wente
,
W. B.
, and
Anand
,
N. K.
,
1997
, “
Aerosol Deposition in Bends With Turbulent Flow
,”
Env. Sci. Tech.
,
31
, pp.
3371
3377
.10.1021/es960975c
13.
Pui
,
D. Y. H.
,
Romay-Novas
,
F.
, and
Liu
,
B. Y. H.
,
1987
, “
Experimental Study of Particle Deposition in Bends of Circular Cross Section
,”
Aerosol Sci. Tech.
,
7
, pp.
301
315
.10.1080/02786828708959166
14.
Longest
,
P. W.
, and
Xi
,
J.
,
2007
, “
Effectiveness of Direct Lagrangian Tracking Models for Simulating Nanoparticle Deposition in the Upper Airways
,”
Aerosol Sci. Tech.
,
41
, pp.
380
397
.10.1080/02786820701203223
15.
Alipchenkov
,
V. M.
,
Nigmatulin
,
R. I.
,
Soloviev
,
S. L.
,
Stonik
,
O. G.
,
Zaichik
,
L. I.
, and
Zeigarnik
,
Y. A.
,
2004
, “
A Three-Fluid Model of Two-Phase Dispersed-Annular Flow
,”
Int. J. Heat Mass Transf.
,
47
, pp.
5323
5338
.10.1016/j.ijheatmasstransfer.2004.07.011
16.
Terekhov
,
V. I.
, and
Pakhomov
,
M. A.
,
2009
, “
Film-Cooling Enhancement of the Mist Vertical Wall Jet on the Cylindrical Channel Surface With Heat Transfer
,”
ASME J. Heat Transf.
,
131
(
6
), p.
062201
.10.1115/1.3082404
17.
Terekhov
,
V. I.
, and
Pakhomov
,
M. A.
,
2009
, “
Predictions of Turbulent Flow and Heat Transfer in Gas-Droplets Flow Downstream of a Sudden Pipe Expansion
,”
Int. J. Heat Mass Transf.
,
52
, pp.
4711
4721
.10.1016/j.ijheatmasstransfer.2009.06.018
18.
Manninen
,
M.
,
Taivassalo
, V
.
,
Kallio
,
S.
, and
Akademi
,
Å.
,
1996
, “
On the Mixture Model for Multiphase Flow
,”
VTT Publication
,
288
, pp.
3
67
. Available at http://www.vtt.fi/inf/pdf/publications/1996/P288.pdf
19.
Longest
,
P. W.
, and
Oldham
,
M. J.
,
2008
, “
Numerical and Experimental Deposition of Fine Respiratory Aerosols: Development of a Two-phase Drift Flux Model With Near-Wall Velocity Corrections
,”
J. Aerosol Sci.
,
39
, pp.
48
70
.10.1016/j.jaerosci.2007.10.001
20.
Wang
,
J. B.
, and
Lai
,
A. C. K.
,
2005
, “
A New Drift-Flux Model for Particle Transport and Deposition in Human Airways
,”
ASME J. Biomech. Eng.
,
128
, pp.
97
105
.10.1115/1.2133763
21.
Hossain
,
A.
,
Naser
,
J.
, and
Imteaz
,
M.
,
2011
, “
CFD Investigation of Particle Deposition in a Horizontal Looped Turbulent Pipe Flow
,”
Env. Mod. Assess.
,
16
, pp.
359
367
.10.1007/s10666-011-9252-8
22.
Ishii
,
M.
,
1975
,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,
Eyrolles
,
Paris
.
23.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation
,”
Comput. Fluid.
,
24
, pp.
227
238
.10.1016/0045-7930(94)00032-T
24.
Boussinesq
,
J.
,
1877
, “
Essai Sur La Théorie Des Eaux Courantes, Mémoires Présentés par Divers Savants à l'Acad
,”
des Sci. Inst. Nat. France
,
XXIII
, pp.
1
680
.
25.
Pourahmadi
,
F.
,
1982
, “
Turbulence Modeling of Single- and Two-Phase Curved-Channel Flows
,” Ph.D. thesis, University of California-Berkeley, Berkeley, CA.
26.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Meth. Appl. Mech. Eng.
,
3
, pp.
269
289
.10.1016/0045-7825(74)90029-2
27.
Kim
,
S.-E.
, and
Choudhury
,
D.
,
1995
, “
A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient
,”
ASME Separated and Complex Flows
,
217
, pp.
273
280
.
28.
Zhang
,
P.
,
Gros
,
Y.
,
Roberts
,
R. M.
, and
Bénard
,
A.
,
2010
, “
Modeling of Turbulent Flow with Particle Deposition in Curved Pipes
,” 7th International Conference on Multiphase Flow, Tampa, FL.
29.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transf.
,
12
, pp.
301
318
.10.1016/0017-9310(69)90012-X
30.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
Int. J. Heat Mass Transf.
,
15
, pp.
1787
1806
.10.1016/0017-9310(72)90054-3
31.
2009, Ansys Fluent 12—Theory Guide.
32.
Perng
,
C. Y.
, and
Street
,
R. L.
,
1989
, “
Three-Dimensional Unsteady Flow Simulations: Alternative Strategies for a Volume-Averaged Calculation
,”
Int. J. Num. Meth. Fluid.
,
9
, pp.
341
362
.10.1002/fld.1650090308
33.
Banerjee
,
S.
,
Rhodes
,
E.
, and
Scott
,
D. S.
,
1967
, “
Film Inversion of Concurrent Two-Phase Flow in Helical Coils
,”
Am. Inst. Chem. Eng.
,
13
, pp.
189
191
.10.1002/aic.690130137
34.
Sookprasong
,
P.
,
1980
, “
Two-Phase Flow in Piping Components
,” M.Sc. thesis, University of Tulsa, Tulsa, OK.
35.
Norstebo
,
A.
,
1985
, “
Pressure Drop in Pipe Components in Two-Phase Gas-liquid Flow
,” Ph.D. thesis, The Norwegian Institute of Technology, NTH, Division of R, Trondheim, Norway.
36.
Mandal
,
S. N.
, and
Das
,
S. K.
,
2001
, “
Pressure Losses in Bends During Two-Phase Gas-Newtonian Liquid Flow
,”
Ind. Eng. Chem. Res.
,
40
, pp.
2340
2351
.10.1021/ie0003988
37.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase Flow, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
, pp.
39
45
. Available at http://dns2.asia.edu.tw/~ysho/YSHO-english/1000%20CE/PDF/Che%20Eng%20Pro45,%2039.pdf
38.
Paliwoda
,
A.
,
1992
, “
Generalized Method of Pressure Drop Calculation Across Pipe Components of Refrigerants
,”
Int. J. Refrig.
,
15
, pp.
119
125
. 10.1016/0140-7007(92)90036-T
39.
Chisholm
,
D.
,
1971
, “
Prediction of Pressure Drop at Pipe Fittings During Two-phase Flow
,”
13th International Congress of Refrigeration
,
2
, pp.
781
789
.
40.
Azzi
,
A.
,
Friedel
,
L.
, and
Belaadi
,
S.
,
2000
, “
Two-Phase Gas/Liquid Flow Pressure Loss in Bends
,”
Forschung im Ingenieurwesen
,
65
, pp.
309
318
.10.1007/s100100000030
41.
Cunningham
,
E.
,
1910
, “
On the Velocity of Steady Fall of Spherical Particles Through Fluid Medium
,”
Proc. Royal Soc.
,
83
, pp.
357
365
.10.1098/rspa.1910.0024
42.
Johansen
,
S. T.
,
Anderson
,
N. M.
, and
de Silva
,
S. R.
,
1990
, “
A Two-Phase Model for Particle Local Equilibrium Applied to Air Classification of Powers
,”
Power Tech.
,
63
, pp.
121
132
.10.1016/0032-5910(90)80034-V
43.
Picart
,
A.
,
Berlemont
,
A.
, and
Gouesbet
,
G.
,
1986
, “
Modeling and Predicting Turbulence Fields and the Dispersion of Discrete Particles Transported by Turbulent Flows
,”
Int. J. Multiph. Flow
,
12
, pp.
237
261
.10.1016/0301-9322(86)90028-5
44.
Schiller
,
L.
, and
Naumann
,
Z.
,
1935
, “
A Drag Coefficient Correlation
Z. Ver Deutsch Ing.
,
77
, pp.
318
327
.
You do not currently have access to this content.