A linear analysis method was used to investigate the instability behavior of a viscoelastic liquid sheet moving through a viscous gas bounded by two horizontal parallel flat plates. The liquid sheet velocity profile was taken into account. The result showed that the velocity gradient of viscoelastic liquid sheets was greater than that of the corresponding Newtonian sheets. The effects of time-constant, elasticity number, and the ratio of distance between the liquid sheet and flat plate to liquid sheet thickness on the velocity profiles of viscoelastic liquid sheets were also investigated. The relationship between temporal growth rate and the wave number was obtained using linear stability analysis and solved using the Chebyshev spectral collocation method. The rheological parameters and flow parameters were tested for their influence on the instability of the viscoelastic liquid sheets. It is concluded that disturbances grow faster on viscoelastic liquid sheets than on Newtonian sheets with identical zero shear viscosity. Increasing the momentum flux ratio, elasticity number, Weber number, and liquid Reynolds number accelerated the breakup of the viscoelastic liquid sheet, while increasing the time constant, ratio of the distance between the liquid sheet, and the flat plate to the liquid sheet thickness had the opposite effect.

References

1.
Savart
,
F.
,
1833
, “
Memoire sur le Choc D'une Veine Liquide Lancée Contre un Plan Circulaire
,”
Ann. Chim.
,
54
, pp.
56
87
.
2.
Squire
,
H. B.
,
1953
, “
Investigation of the Instability of a Moving Liquid Film
,”
Br. J. Appl.
, Phys.,
4
, pp.
167
169
.10.1088/0508-3443/4/6/302
3.
Hagerty
,
W. W.
, and
Shea
,
J. F.
,
1955
, “
A Study Stability of Plane Fluid Sheets
,”
J. Appl. Mech.
,
22
, pp.
509
514
.
4.
Dombrowski
,
N.
, and
Johns
,
W. R.
,
1963
, “
The Aerodynamic Instability and Disintegration Viscosity Liquid Sheet
,”
Chem. Eng. Sci.
,
18
, pp.
203
214
.10.1016/0009-2509(63)85005-8
5.
Li
,
X.
, and
Tankin
,
R. S.
,
1991
, “
On the Temporal Instability of a Two-Dimensional Viscosity Liquid Sheet
,”
J. Fluid Mech.
,
226
, pp.
425
443
.10.1017/S0022112091002458
6.
Yang
,
L.
,
Liu
,
Y.
, and
Fu
,
Q.
,
2012
, “
Linear Stability Analysis of an Electrified Viscoelastic Liquid Jet
,”
ASME J. Fluids Eng.
,
134
, p.
071303
.10.1115/1.4006913
7.
Li
,
X.
,
1993
, “
Spatial Instability of Plan Liquid Sheets
,”
Chem. Eng. Sci.
,
48
, pp.
2973
2981
.10.1016/0009-2509(93)80042-O
8.
Lozano
,
A.
,
Barreras
,
F.
,
Hauke
,
G.
, and
Dopazo
,
C.
,
2001
, “
Longitudinal Instabilities in an Air-Blasted Liquid Sheet
,”
J. Fluid Mech.
,
437
, pp.
143
173
.10.1017/S0022112001004268
9.
Ibrahim
,
E. A.
,
1998
, “
Instability of a Liquid Sheet of Parabolic Velocity Profile
,”
Phys. Fluids
,
10
, pp.
1034
1036
.10.1063/1.869628
10.
Ibrahim
,
E. A.
, and
Akpan
,
E. T.
,
1996
, “
Three-Dimensional Instability of Viscous Liquid Sheets
,”
Atomization Sprays
,
6
, pp.
649
665
. Available at http://www.dl.begellhouse.com/journals/6a7c7e10642258cc,53157ffd69db9022,691ae8ce689163a0.html
11.
Taylor
,
G. I.
,
1959
, “
The Dynamics of Thin Sheets of Fluid, Waves on Fluid Sheets
,”
Proc. R. Soc.
,
253
, pp.
296
312
.10.1098/rspa.1959.0195
12.
Lin
,
S. P.
,
Lian
,
Z. W.
, and
Creighton
,
B. J.
,
1990
, “
Absolute and Convective Instability of a Liquid Sheet
,”
J. Fluid Mech.
,
220
, pp.
673
689
.10.1017/S0022112090003421
13.
Rees
,
S. J.
, and
Juniper
,
M. P.
,
2010
, “
The Effect of Confinement on the Stability of Viscous Planar Jets and Wakes
,”
J. Fluid Mech.
,
656
, pp.
309
336
.10.1017/S0022112010001060
14.
Liu
,
Z.
,
Brenn
,
G.
, and
Durst
,
F.
,
1998
, “
Linear Analysis of the Instability of Two-Dimensional Non-Newtonian Liquid Sheets
,”
J. Non-Newtonian Fluid Mech.
,
78
, pp.
133
166
.10.1016/S0377-0257(98)00060-3
15.
Yang
,
L.
,
Qu
,
Y.
, and
Fu
,
Q.
,
2010
, “
Linear Stability Analysis of a Non- Newtonian Liquid Sheet
,”
J. Propul. Power
,
26
, pp.
1212
1224
.10.2514/1.50361
16.
Astarita
,
G.
, and
Marrucci
,
G.
,
1974
,
Principles of Non-Newtonian Fluid Mechanics
,
McGraw-Hill
,
New York
.
17.
Bronshtein
,
I. N.
,
Semendyayev
,
K. A.
,
Musiol
,
G.
, and
Muhelig
,
H.
,
2004
,
Handbook of Mathematics
,
Springer
,
Berlin
, Chap. 1.
18.
Orszag
,
S. A.
,
1971
, “
Accurate Solution of the Orr–Sommerfeld Stability Equation
,”
J. Fluid Mech.
,
50
, pp.
689
703
.10.1017/S0022112071002842
19.
Peyret
,
R.
,
2002
,
Spectral Methods for Incompressible Viscous Flow
,
Springer
,
New York
, Chap. 3.
20.
Shen
,
J.
, and
Tang
,
T.
,
2006
,
Spectral and High-Order Methods With Applications
,
China Press
,
Beijing, P. R. C.
, Chap. 2.
21.
Nath
,
S.
, and
Mukhopadhyay
,
A.
,
2009
, “
Instability Analysis of a Plane Liquid Sheet Sandwiched Between Two Gas Streams of Nonzero Unequal Velocities
,” AIAA Paper No. 5157.
22.
Liu
,
Z.
, and
Liu
,
Z.
,
2006
, “
Linear Analysis of Three-Dimensional Instability of Non-Newtonian Liquid Jets
,”
J. Fluid Mech.
,
559
, pp.
451
459
.10.1017/S0022112006000413
23.
Liu
,
Z.
, and
Liu
,
Z.
,
2008
, “
Instability of a Viscoelastic Liquid Jet With Axisymmetric and Asymmetric Disturbances
,”
Int. J. Multiphase Flow
,
34
, pp.
42
60
.10.1016/j.ijmultiphaseflow.2007.08.001
24.
Ivansson
,
S.
, and
Karasalo
,
I.
,
1993
, “
Computation of Modal Wavenumbers Using an Adaptive Winding-Number Integeral Method With Error Control
,”
J. Sound Vib.
,
161
(
1
), pp.
173
180
.10.1016/0022-460X(93)90410-D
You do not currently have access to this content.