In this study we implemented the network simulation techniques using macromodels (lumped models) for capillary driven flows in microfluidic networks. The flow characteristics in a flow junction, such as meniscus stretching and bifurcation, were studied and their effects on filling time as well as pressure drop were explored for various network configurations. The results from the network simulator are validated numerically using computational fluid dynamics (CFD) simulations by employing the volume-of-fluids (VOF) method. The predictions by the network simulator for free-surface flows in different microfluidic networks were found to be in good agreement with the results obtained from the VOF simulations for filling time and meniscus position.

References

1.
Jian
,
S.
, and
Lin
,
M.
, 2006, “
Effect of Smooth Microchannel Cross Section Shape on Friction Factor
,”
1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems
,
Zhuhai, China
, Jan. 18–21.
2.
Banerjee
,
D.
, 2005, “
Experimental Validation of Macromodels for Simulating Capillary Driven Multi-Phase Flows Used for Microchamber Filling
,”
Proceedings of INTERPACK2005, The ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS and Electronic Systems
,
San Francisco, CA
, Jul. 17–22, INTERPACK2005-73412.
3.
Bourouina
,
T.
, and
Grandchamp
,
J.
, 1996, “
Modeling Micropumps with Electrical Equivalent Networks
,”
J. Micromech. Microeng.
,
6
, pp.
398
404
.
4.
Chatterjee
,
A. N.
, and
Aluru
,
N. R.
, 2005, “
Combined Circuit/Device Modeling and Simulation of Integrated Microfluidic Systems
,”
J. Microelectromech. Syst.
,
14
(
1
), pp.
81
95
.
5.
Banerjee
,
D.
,
Amro
,
N. A.
, and
Fragala
,
J.
, 2005, “
Optimization of Microfluidic Ink-Delivery Apparatus for Dip Pen Nanolithography™
,”
SPIE J. Microlith., Microfab. and Microsyst
,
4
, pp.
023014
023021
.
6.
White
,
F. M.
, 2003,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
7.
Saha
,
A. A.
, and
Mitra
,
S. K.
, 2008,
Recent Advances in Modeling and Simulation: Chap 17 Modeling and Simulation of Microscale Flow
,
InTech Education and Publishing
,
Austria
.
8.
Sikalo
,
S.
,
Wilhelm
,
H. D.
,
Roisman
,
I. V.
,
Jakirlic
,
S.
, and
Tropea
,
C.
, 2005, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
, pp.
062103
.
9.
Saha
,
A. A.
, and
Mitra
,
S. K.
, 2009, “
Effect of Dynamic Contact Angle in a Volume of Fluid (VOF) Model for a Microfluidic Capillary Flow
,”
J. Colloid Interface Sci.
,
339
, pp.
461
480
.
10.
Banerjee
,
D.
, 2005, “
Investigation of Volume of Fluids (VOF) Method and System Models for Design of Microfluidic Ink Delivery Apparatus for Dip Pen Nanolithography (DPN)
,”
Nano Science and Technology Institute (NSTI) Nanotechnology 2005/NanoBio2005
, Anaheim, CA, May 10–12, Vol.
1
, pp.
680
683
.
11.
Chakrabarty
,
K.
, and
Zeng
,
J.
, 2005, “
Design Automation for Microfluidics-Based Biochips
,”
J. Emerging Technol. Comput. Syst.
,
1
(
3
), pp.
186
223
.
12.
Wang
,
K.-L.
, and
Jones
,
T. B.
, 2005, “
Saturation Effects in Dynamic Electrowetting
,”
Appl. Phys. Lett.
,
86
, pp.
054104
.
13.
Saha
,
A. A.
, and
Mitra
,
S. K.
, 2009, “
Numerical Study of Capillary Flow in Microchannels with Alternate Hydrophilic-Hydrophobic Bottom Wall
,”
ASME J. Fluids Eng.
,
131
(
6
), pp.
061202
.
14.
Washburn
,
E. W.
, 1921, “
The Dynamics of Capillary Flow
,”
Phys. Rev.
,
27
(
3
), pp.
273
283
.
15.
Lucas
,
V. R.
, 1918, “
Uber das Zeitgesetz des Kapillaren Aufstiegs von Flussigkeiten
,”
Kolloid. Zh.
,
23
, pp.
15
22
.
16.
Hamaraoui
,
A.
, and
Nylander
,
T.
, 2002, “
Analytical Approach for the Lucas–Washburn Equation
,”
J. Colloid Interface Sci.
,
250
, pp.
415
421
.
17.
Zhmud1
,
B. V.
,
Tiberg
,
F.
, and
Hallstensson
,
K.
, 2000, “
Dynamics of Capillary Rise
,”
J. Colloid Interface Sci.
,
228
, pp.
263
269
.
18.
Friesa
,
N.
, and
Dreyer
,
M.
, 2008, “
An Analytic Solution of Capillary Rise Restrained by Gravity
,”
J. Colloid Interface Sci.
,
320
(
1
), pp.
259
263
.
19.
Friesa
,
N.
, and
Dreyer
,
M.
, 2008, “
The Transition from Inertial to Viscous Flow in Capillary Rise
,”
J. Colloid Interface Sci.
,
327
(
1
), pp.
125
128
.
20.
Martic
,
G.
,
Gentner
,
F.
,
Seveno
,
D.
,
Coulon
,
D.
, and
De Coninck
,
J.
, 2002, “
A Molecular Dynamics Simulation of Capillary Imbibition
,”
Langmuir
,
18
, pp.
7971
7976
.
You do not currently have access to this content.