We describe an approach to simulate dynamic cavitation behavior based on large eddy simulation of the governing flow, using an implicit approach for the subgrid terms together with a wall model and a single fluid, two-phase mixture description of the cavitation combined with a finite rate mass transfer model. The pressure-velocity coupling is handled using a PISO algorithm with a modified pressure equation for improved stability when the mass transfer terms are active. The computational model is first applied to a propeller flow in homogeneous inflow in both wetted and cavitating conditions and then tested in an artificial wake condition yielding a dynamic cavitation behavior. Although the predicted cavity extent shows discrepancy with the experimental data, the most important cavitation mechanisms are present in the simulation, including internal jets and leading edge desinence. Based on the ability of the model to predict these mechanisms, we believe that numerical assessment of the risk of cavitation nuisance, such as erosion or noise, is tangible in the near future.

1.
Bark
,
G.
,
Grekula
,
M.
,
Bensow
,
R.
, and
Berchiche
,
N.
, 2009, “
On Some Physics to Consider in Numerical Simulation of Erosive Cavitation
,”
Proceedings of the Seventh International Symposium on Cavitation
, Ann-Arbor, MI.
2.
Stella
,
A.
,
Guj
,
G.
,
Di Felice
,
F.
, and
Elefante
,
M.
, 2000, “
Experimental Investigation of Propeller Wake Evolution by Means of LDV and Flow Visualizations
,”
J. Ship Research
,
44
(
3
), pp.
155
169
.
3.
Di Florio
,
D.
,
Di Felice
,
F.
,
Romano
,
G. P.
, and
Elefante
,
M.
, 2001, “
Propeller Wake Structure at Different Advance Coefficients by Means of PIV
,”
Proceedings of PSFVIP-3
, Maui, HI.
4.
Di Felice
,
F.
,
Felli
,
M.
,
Giordano
,
G.
, and
Soave
,
M.
, 2003, “
Pressure and Velocity Correlation in the Wake of a Propeller
,”
Proceedings of Propeller Shafting
, Virginia Beach, Norfolk, VA.
5.
Pereira
,
F.
,
Salvatore
,
F.
, and
Di Felice
,
F.
, 2004, “
Measurement and Modeling of Propeller Cavitation in Uniform Inflow
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
671
679
.
6.
Pereira
,
F.
,
Salvatore
,
F.
,
Di Felice
,
F.
, and
Soave
,
M.
, 2004, “
Experimental Investigation of a Cavitating Propeller in Non-Uniform Inflow
,”
Proceedings of the 25th ONR Symposium on Naval Hydrodynamics
, St. John’s, Canada.
7.
Bensow
,
R. E.
, and
Liefvendahl
,
M.
, 2008, “
Implicit and Explicit Subgrid Modeling in Les Applied to a Marine Propeller
,” Paper No. AIAA-2008-4144.
8.
Frikha
,
S.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
, 2008, “
Influence of the Cavitation Model on the Simulation of Cloud Cavitation on a 2D Foil Section
,”
Int. J. Rotating Mach.
1023-621X,
2008
, Article ID 146234.
9.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part-1: Model Development and Steady-State Computations
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
(
9
), pp.
975
995
.
10.
Sagaut
,
P.
, 2006,
Large Eddy Simulation for Incompressible Flows
, 3rd ed.,
Springer
,
New York
.
11.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
,
DCW
,
La Canada, CA
.
12.
Huuva
,
T.
, 2008, “
Large Eddy Simulation of Cavitating and Non-Cavitating Flow
,” Ph.D. thesis, Chalmers University of Technology, Göteborg, Sweden.
13.
Senocak
,
I.
, and
Shyy
,
W.
, 2004, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part-2: Time-Dependent Computations
,”
Int. J. Numer. Methods Fluids
0271-2091,
44
(
9
), pp.
997
1016
.
14.
Schnerr
,
G. H.
,
Sezal
,
I. H.
, and
Schmidt
,
S. J.
, 2008, “
Numerical Investigation of Three-Dimensional Cloud Cavitation With Special Emphasis on Collapse Induced Shock Dynamics
,”
Phys. Fluids
1070-6631,
20
, p.
040703
.
15.
Koop
,
A.
, 2008, “
Numerical Simulation of Unsteady Three-Dimensional Sheet Cavitation
,” Ph.D. thesis, Twente University, Netherlands.
16.
Qin
,
Q.
,
Song
,
C. S. S.
, and
Arndt
,
R. E. A.
, 2003, “
A Numerical Study of Unsteady Turbulent Wake Behind a Cavitating Hydrofoil
,”
Proceedings of the Fifth International Symposium on Cavitation
, Osaka, Japan.
17.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
, 2000, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
0045-7930,
29
(
8
), pp.
849
875
.
18.
Streckwall
,
H.
, and
Salvatore
,
F.
, 2008, “
Results of the Wageningen 2007 Workshop on Propeller Open Water Calculations Including Cavitation
,”
Proceedings of the RINA CFD 2008
, Southhampton, UK.
19.
Salvatore
,
F.
,
Streckwall
,
H.
, and
Terwisga
,
T. V.
, 2009, “
Propeller Cavitation Modelling by CFD–Results From the VIRTUW 2008 Rome Workshop
,”
Proceedings of the First International Symposium on Marine Propulsors
, Trondheim, Norway.
20.
Bensow
,
R. E.
, and
Fureby
,
C.
, 2007, “
On the Justification and Extension of Mixed Methods in LES
,”
J. Turbul.
1468-5248,
8
, p.
N54
.
21.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Reynolds
,
W. C.
, 1980, “
Improved Subgrid Scale Models for Large Eddy Simulations
,” Paper No. AIAA-80-1357.
22.
Grinstein
,
F. F.
,
Margolin
,
L.
, and
Rider
,
W.
, eds., 2007,
Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics
,
Cambridge University Press
,
Cambridge, England
.
23.
Fureby
,
C.
,
Alin
,
N.
,
Wikström
,
N.
,
Menon
,
S.
,
Persson
,
L.
, and
Svanstedt
,
N.
, 2004, “
On Large Eddy Simulations of High Re-Number Wall Bounded Flows
,”
AIAA J.
0001-1452,
42
, pp.
457
468
.
24.
Fureby
,
C.
, 2007, “
ILES and LES of Complex Engineering Flows
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
1514
1523
.
25.
Fureby
,
C.
, and
Karlsson
,
A.
, 2009, “
LES of the Flow Past a 6:1 Prolate Spheroid
,”
Proceedings of the 47th AIAA Aerospace Sciences Meeting
, Paper No. AIAA-2009-1616.
26.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
, 1998, “
Computation Modeling of the Dynamics of Sheet Cavitation
,”
Proceedings of the Third International Symposium on Cavitation
, Grenoble, France.
27.
OpenFOAM Web Site
, 2008, www.openfoam.comwww.openfoam.com.
28.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
, 1998, “
A Tensorial Approach to CFD Using Object Oriented Techniques
,”
Comput. Phys.
0894-1866,
12
, pp.
620
631
.
29.
Jasak
,
H.
, 1996, “
Error Analysis and Estimation for the Finite Volume Method With Applications to Fluid Flows
,” Ph.D. thesis, Imperial College, London, UK.
30.
Issa
,
R. I.
, 1986, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
0021-9991,
62
(
1
), pp.
40
65
.
31.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
(
11
), pp.
1525
1532
.
32.
Demirdzic
,
I.
, and
Peric
,
M.
, 1990, “
Finite Volume Method for Prediction of Fluid Flow in Arbitrarily Shaped Domains With Moving Boundaries
,”
Int. J. Num. Methods Fluids
,
10
(
7
), pp.
771
790
. 0002-7820
33.
Persson
,
T.
,
Fureby
,
C.
, and
Bensow
,
R. E.
, 2005, “
Large Eddy Simulation and Detached Eddy Simulation Around a Circular Cylinder
,” Chalmers Report No 05:98, ISSN 1652-9189.
34.
Rouse
,
H.
, and
McNown
,
J. S.
, 1948, “
Cavitation and Pressure Distribution, Head Forms at Zero Angle of Yaw
,” Studies in Engineering, Bulletin 32, State University of Iowa.
35.
Vaidyanathan
,
R.
,
Senocak
,
I.
,
Jiongyang
,
W.
, and
Shyy
,
W.
, 2003, “
Sensitivity Evaluation of a Transport Based Turbulent Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
447
458
.
36.
Ahuja
,
V.
,
Hosangadi
,
A.
, and
Arunajatesan
,
S.
, 2001, “
Simulations of Cavitating Flows Using Hybrid Unstructured Meshes
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
331
340
.
37.
Stella
,
A.
,
Guj
,
G.
, and
Di Felice
,
F.
, 2000, “
Propeller Wake Flowfield Analysis by Means of LDV Phase Sampling Technique
,”
Exp. Fluids
0723-4864,
28
, pp.
1
10
.
38.
Steinhoff
,
J.
, 1994, “
Vorticity Confinement: A New Technique for Computing Vortex Dominated Flows
,”
Frontiers of Computational Fluid Dynamics
,
Wiley
,
New York
.
39.
Bensow
,
R. E.
, and
Larson
,
M. G.
, 2010, “
Residual Based VMS Subgrid Modeling for Vortex Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
199
, pp.
802
809
.
40.
Huuva
,
T.
,
Bark
,
G.
,
Cure
,
A.
, and
Nilsson
,
H.
, 2007, “
Computations of Unsteady Cavitating Flow on Wing Profiles Using a Volume Fraction Method and Mass Transfer Models
,”
Proceedings of the Second IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Timisoara, Romania.
You do not currently have access to this content.