This paper presents a fast method for determining the conductance of gas microfluidic devices with low flow rates and very small pressure drops starting from 30 Pa, corresponding to Re=0.3. This method is based on discharging a gas-pressurized chamber through the microfluidic device under test. The microfluidic device’s conductance can be estimated as a function of inlet pressure and the Reynolds number of the flow by recording the upstream pressure during the discharging process and calculating the time derivative of the gas pressure. The pressurized chamber is considered as an isothermal chamber. Experimental results show that a sufficiently accurate isothermal discharging process up to an upstream-to-downstream pressure ratio of 0.8 can be achieved by immersing the chamber in a thermal bath. The method presented here is very fast, requiring only a few seconds for the acquisition procedure and computerized data processing.

1.
Squires
,
T. M.
, and
Quake
,
S. R.
, 2005, “
Microfluidics: Fluid Physics at the Nanoliter Scale
,”
Rev. Mod. Phys.
0034-6861,
77
, pp.
977
.
2.
Zhang
,
C.
,
Xing
,
D.
, and
Li
,
Y.
, 2007, “
Micropumps, Microvalves, and Micromixers Within PCR Microfluidic Chips: ADVANCES and Trends
,”
Biotechnol. Adv.
0734-9750,
25
, pp.
483
514
.
3.
Oh
,
K. W.
, and
Ahn
,
C. H.
, 2006, “
A Review of Microvalves
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
R13
R39
.
4.
Doll
,
A.
,
Wischke
,
M.
,
Schrag
,
H. -J.
,
Geipel
,
A.
,
Goldschmidtboeing
,
F.
, and
Woias
,
P.
, 2007, “
Characterization of Active Silicon Microvalves With Piezoelectric Membrane Actuators
,”
Microelectron. Eng.
0167-9317,
84
, pp.
1202
1206
.
5.
Belforte
,
G.
,
Eula
,
G.
,
Martinelli
,
M.
, and
Viktorov
,
V.
, 2003, “
Bistable Fluidic Laminar Amplifiers for Optopneumatic Interfaces
,”
Journal of Robotics and Mechatronics
0915-3942,
15
(
4
), pp.
377
383
.
6.
Belforte
,
G.
,
Eula
,
G.
,
Martinelli
,
M.
,
Raparelli
,
T.
, and
Viktorov
;
V.
, 2005, “
Optimization of an Optopneumatic Interface
,”
Mechatronics
0957-4158,
15
(
3
), pp.
359
369
.
7.
Martinelli
,
M.
, and
Viktorov
,
V.
, 2008 “
Modelling of Laminar Flow in the Inlet Section of Rectangular Microchannels
,”
J. Micromech. Microeng.
0960-1317,
19
, p.
025013
.
8.
Renaud
,
L.
,
Malhaire
,
C.
,
Kleimann
,
P.
,
Barbier
,
D.
, and
Morin
,
P.
, 2008, “
Theoretical and Experimental Studies of Microflows in Silicon Microchannels
,”
Mater. Sci. Eng.
0025-5416,
28
, pp.
910
917
.
9.
International Standard ISO TC 1317SC 5 N 458 ISO/CD 6358-1, “Pneumatic Fluid Power—Determination of Flow-Rate Characteristics of Components Using Compressible Fluids.”
10.
International Standard ISO 5167, “Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross Section Conduits Running Full.”
11.
Wright
,
J. D.
, and
Johnson
,
A. N.
, 2000, “
Uncertainty in Primary Gas Flow Standards due to Flow Work Phenomena
,”
FLOMEKO: IPT 2000
, Salvador, Brazil, p.
11
.
12.
Wright
,
J. D.
,
Johnson
,
A. N.
, and
Moldover
,
M. R.
, 2003, “
Design and Uncertainty Analysis for a PVTt Gas Flow Standard
,”
J. Res. Natl. Inst. Stand. Technol.
1044-677X,
108
(
1
), pp.
21
47
.
13.
Nakao
,
S. -I.
, 2006, “
Development of the PVTt System for very Low Gas Flow Rates
,”
Flow Meas. Instrum.
0955-5986,
17
, pp.
193
200
.
14.
Kawashima
,
K.
,
Ishii
,
Y.
,
Funaki
,
T.
, and
Kagawa
,
T.
, 2004, “
Determination of Flow Rate Characteristics of Pneumatic Solenoid Valves Using an Isothermal Chamber
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
273
279
.
15.
Fu
,
W. -S.
, and
Ger
,
J. -S.
, 1998, “
A Concise Method for Determining a Valve Flow Coefficient of a Valve Under Compressible Gas Flow
,”
Exp. Therm. Fluid Sci.
0894-1777,
18
, pp.
307
313
.
16.
Bignell
,
N.
, and
Choi
,
Y. M.
, 2001, “
Volumetric Positive-Displacement Gas Flow Standard
,”
Flow Meas. Instrum.
0955-5986,
12
, pp.
245
251
.
17.
White
,
F. M.
, 1994,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.