Large eddy simulation of turbulent cavitating flow in a venturi nozzle is conducted. The fully compressible Favre-filtered Navier–Stokes equations are coupled with a homogeneous equilibrium cavitation model. The dynamic Smagorinsky subgrid-scale turbulence model is employed to close the filtered nonlinear convection terms. The equations are numerically integrated in the context of a generalized curvilinear coordinate system to facilitate geometric complexities. A sixth-order compact finite difference scheme is employed for the Navier–Stokes equations with the AUSM+-up scheme to handle convective terms in the presence of large density gradients. The stiffness of the system due to the incompressibility of the liquid phase is addressed through an artificial increase in the Mach number. The simulation predicts the formation of a vapor cavity at the venturi throat with an irregular shedding of the small scale vapor structures near the turbulent cavity closure region. The vapor formation at the throat is observed to suppress the velocity fluctuations due to turbulence. The collapse of the vapor structures in the downstream region is a major source of vorticity production, resulting into formation of hair-pin vortices. A detailed analysis of the vorticity transport equation shows a decrease in the vortex-stretching term due to cavitation. A substantial increase in the baroclinic torque is observed in the regions where the vapor structures collapse. A spectra of the pressure fluctuations in the far-field downstream region show an increase in the acoustic noise at high frequencies due to cavitation.

1.
Brennen
,
C. E.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford
.
2.
Seo
,
J. H.
,
Moon
,
Y. J.
, and
Shin
,
B. R.
, 2008, “
Prediction of Cavitating Flow Noise by Direct Numerical Simulations
,”
J. Comput. Phys.
0021-9991,
227
, pp.
6511
6531
.
3.
Knapp
,
R. T.
, 1995, “
Recent Investigation on the Mechanics of Cavitation and Erosion Damage
,”
Trans. ASME
0097-6822,
77
, pp.
1045
1054
.
4.
Stutz
,
B.
, and
Reboud
,
J.
, 1997, “
Experiments on Unsteady Cavitation
,”
Exp. Fluids
0723-4864,
22
, pp.
191
198
.
5.
Pham
,
T.
,
Larrarte
,
F.
, and
Fruman
,
D.
, 1999, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
289
295
.
6.
De Lange
,
F.
, and
De Bruin
,
J.
, 1997, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Appl. Sci. Res.
0003-6994,
58
, pp.
91
114
.
7.
Callenaere
,
M.
,
Franc
,
J. -P.
,
Michel
,
J. -M.
, and
Riondet
,
J.
, 2001, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
0022-1120,
444
, pp.
223
256
.
8.
Coutier-Delgosha
,
O.
,
Reboud
,
J. L.
, and
Delannoy
,
Y.
, 2003, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
0271-2091,
42
, pp.
527
548
.
9.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
, 1997, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
788
794
.
10.
Gopalan
,
S.
, and
Katz
,
J.
, 2000, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation
,”
Phys. Fluids
0031-9171,
12
, pp.
895
911
.
11.
Iyer
,
C.
, and
Ceccio
,
S.
, 2002, “
The Influence of Developed Cavitation on the Flow of a Turbulent Shear Layer
,”
Phys. Fluids
0031-9171,
14
, pp.
3414
3430
.
12.
Shin
,
B. R.
,
Yamamoto
,
S.
, and
Yuan
,
X.
, 2004, “
Application of Pre-Conditioning Method to Gas-Liquid Two-Phase Flow Computations
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
605
612
.
13.
Singhal
,
A.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Yu
,
J.
, 2002, “
Mathematical Basis and Validation of Full Cavitation Model
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
617
624
.
14.
Lele
,
S. K.
, 1992, “
Compact Finite Difference Schemes With Spectral-Like Resolution
,”
J. Comput. Phys.
0021-9991,
103
, pp.
16
42
.
15.
Liou
,
M. S.
, 2006, “
A Sequel to AUSM, Part II: AUSM+-UP for All Speeds
,”
J. Comput. Phys.
0021-9991,
214
, pp.
137
170
.
16.
Liu
,
T. G.
,
Khoo
,
B. C.
, and
Xie
,
W.
, 2004, “
Isentropic One-Fluid Modelling of Unsteady Cavitating Flow
,”
J. Comput. Phys.
0021-9991,
201
, pp.
80
108
.
17.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J.
, 2004, “
Test Case Number 30: Unsteady Cavitation in a Venturi Type Section (PN)
,”
Multiphase Sci. Technol.
0276-1459,
16
, pp.
207
218
.
18.
Wilcox
,
C. D.
, 2004,
Turbulence Modeling for CFD
,
DCW Industries Inc.
,
California
.
19.
Poinsot
,
T.
, and
Lele
,
S. K.
, 1992, “
Boundary Conditions for Direction Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
0021-9991,
101
, pp.
104
129
.
20.
Colonius
,
T.
,
Moin
,
P.
, and
Lele
,
S. K.
, 1995, “
Direct Computation of Aerodynamic Sound
,” Technical Report No. TF-65, Stanford University, Stanford, CA.
21.
Belahadji
,
B.
,
Franc
,
P.
, and
Michel
,
M.
, 1995, “
Cavitation in the Rotational Structures of a Turbulent Wake
,”
J. Fluid Mech.
0022-1120,
287
, pp.
383
403
.
22.
Xing
,
T.
,
Li
,
Z.
, and
Frankel
,
S.
, 2005, “
Numerical Simulation of Vortex Cavitation in a Three Dimensional Submerged Transitional Jet
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
714
725
.
23.
Laberteaux
,
K.
and
Ceccio
,
L.
, 2001, “
Partial Cavity Flows. Part 1: Cavities Forming on Models Without Spanwise Variation
,”
J. Fluid Mech.
0022-1120,
431
, pp.
1
41
.
24.
Laberteaux
,
K.
and
Ceccio
,
L.
, 2001, “
Partial Cavity Flows. Part 2: Cavities Forming on Test Objects With Spanwise Variation
,”
J. Fluid Mech.
0022-1120,
431
, pp.
43
63
.
You do not currently have access to this content.