Cavitation occurs widely in hydraulic machines, water and underwater vehicles, and lots of other equipments operating with liquids. Much research has been carried out to find out the factors affecting the degree of cavitation for better control of this phenomenon. In this study, the effects of grooves distributed around the body of revolution on cavitation are investigated using experimental and numerical methods. The experimental results show that the position and shape of the cavity clouds are affected by the dimensions of the grooves. A numerical simulation using the finite volume method indicates that the grooves influence the pressure distribution in the whole flow field and induce significant pressure fluctuation. The minimum pressure in each groove occurs on the top of the groove’s “windward” edge and decreases as the groove width is increased. Comparing the experimental and numerical results, it is found that cavitation is closely related to the local pressure of the fluid. Multiple grooves around the body of revolution induce pressure fluctuation. The groove width affects the amplitude and interval of the fluctuation and consequently influences the distribution of cavitation.

1.
Lecoffre
,
Y.
, 1999,
Cavitation: Bubble Trackers
,
A. A. Balkema
,
Brookfield, VT
.
2.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammitt
,
F. G.
, 1981,
Cavitation
,
Water Conservancy Press
,
Beijing, China
.
3.
Huang
,
J. T.
, 1991,
Theory and Application of Cavitation and Cavitation Erosion
,
Tsinghua University Press
,
Beijing, China
.
4.
Arndt
,
R.
, and
Ippen
,
A. T.
, 1967, “
Cavitation Near Surfaces of Distributed Roughness
,”
MIT Hydrodynamics Laboratory
, Report No. 104.
5.
Ceccio
,
S. L.
, and
Brennen
,
C. E.
, 1992, “
Dynamics of Attached Cavities on Bodies of Revolution
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
93
99
.
6.
Zhang
,
M.-D.
,
Wang
,
G.-Y
,
Zhang
,
Z.
, and
Gao
,
Y.-Y.
, 2006, “
Cavitation Inception in Turbulent Flows Around a Hydrofoil
,”
Journal of Beijing Institute of Technology
,
15
(
4
), pp.
393
396
.
7.
Holl
,
J. W.
, 1965, “
The Estimation of the Effect of Surface Irregularities on the Inception of Cavitation
,”
Cavitation in Fluid machinery
,
ASME
,
New York
, pp.
3
15
.
8.
Holl
,
J. W.
, 1960, “
The Inception of Cavitation on Isolated Surface Irregularities
,”
ASME J. Basic Eng.
0021-9223,
82
, pp.
169
183
.
9.
Benson
,
B. W.
, 1966, “
Cavitation Inception on Three Dimensional Roughness Elements
,”
DTMB
, Report No. 2104.
10.
Chang
,
J. C.
,
Huang
,
S. B.
, and
Lin
,
C. B.
, 2006, “
Effects of Inlet Surface Roughness, Texture, and Nozzle Material on Cavitation
,”
Atomization Sprays
1044-5110,
16
, pp.
299
318
.
11.
Arndt
,
R.
, and
Ippen
,
A. T.
, 1968, “
Rough Surface Effects on Cavitation Inception
,”
ASME J. Basic Eng.
0021-9223,
90
, pp.
249
261
.
12.
Stutz
,
B.
, 2003, “
Influence of Roughness on the Two-Phase Flow Structure of Sheet Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
652
659
.
13.
Coutier-Delgosha
,
O.
,
Devillers
,
J. F.
,
Leriche
,
M.
, and
Pichon
,
T.
, 2005, “
Effect of Wall Roughness on the Dynamics of Unsteady Cavitation
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
726
733
.
14.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
, 2005, “
An Average Flow Model of the Reynolds Roughness Including a Mass-Flow Preserving Cavitation Model
,”
ASME J. Tribol.
0742-4787,
127
, pp.
793
802
.
15.
Bayada
,
G.
,
Martin
,
S.
, and
Vazquez
,
C.
, 2006, “
Micro-Roughness Effects in (Elasto) Hydrodynamic Lubrication Including a Mass-Flow Preserving Cavitation Model
,”
Tribol. Int.
0301-679X,
39
, pp.
1707
1718
.
16.
Harp
,
S. R.
, and
Salant
,
R. F.
, 2001, “
An Average Flow Model of Rough Surface Lubrication With Inter-Asperity Cavitation
,”
ASME J. Tribol.
0742-4787,
123
, pp.
134
143
.
17.
Cao
,
W.
,
Wei
,
Y.
,
Wang
,
C.
,
Zou
,
Z.
, and
Huang
,
W.
, 2006, “
Current Status, Problems and Applications of Supercavitation Technology
,”
Advances in Mechanics
0137-3722,
36
(
4
), pp.
571
579
.
18.
Bai
,
L.
,
Chen
,
D.-R.
,
Li
,
X.-D.
,
Wang
,
J.-D.
,
Zou
,
G.
, and
Xie
,
Y.-B.
, 2006, “
Experimental Study and Numerical Simulation on Drag Reduction of the Underwater Vehicle Based on Surface Profile Design
,”
Journal of Experimental Mechanics
0014-4851,
21
(
5
), pp.
661
666
.
19.
Amromin
,
E.
, and
Mizine
,
I.
, 2003, “
Partial Cavitation as Drag Reduction Technique and Problem of Active Flow Control
,”
Mar. Technol.
0025-3324,
40
(
3
), pp.
181
188
.
20.
Chen
,
H. S.
,
Li
,
J.
, and
Chen
,
D. R.
, 2006, “
Study of Drag Forces on a Designed Surface in Bubbly Water Lubrication Using Electrolysis
,”
ASME J. Fluids Eng.
0098-2202,
128
(
6
), pp.
1383
1389
.
21.
Valerio
,
G.
, 1986, “
Reliability Improvement Through Environmental Tests and Defect Reduction Programs
,”
Proceedings, Annual Technical Meeting—Institute of Environmental Sciences
, pp.
36
39
.
22.
Li
,
C. Y.
, 1999, “MK46 Torpedo of USA,” Modern Ships, 1, pp.
35
37
.
23.
Figliola
,
R. S.
, and
Beasley
,
D. E.
, 2000,
Theory and Design for Mechanical Measurements
,
Wiley
,
New York
.
24.
Kuiper
,
G.
, 1981,
Cavitation Inception on Ship Propeller Models
,
Netherlands Ship Model Basin
,
The Netherlands
.
25.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1996,
Computational Methods for Fluid Dynamics
,
Springer
,
Berlin
.
26.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
, 2007,
An Introduction to Computational Fluid Dynamics
,
Pearson Education Limited
,
England
.
27.
Hayase
,
T.
,
Humphrey
,
J.
, and
Greif
,
R.
, 1992, “
A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures
,”
J. Comput. Phys.
0021-9991,
98
, pp.
108
118
.
28.
Van Doormaal
,
J. P.
, and
Raithby
,
G. G.
, 1984, “
Enhancement of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
29.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
30.
Cui
,
J.
,
Patel
,
V. C.
, and
Lin
,
C. -L.
, 2003, “
Large-Eddy Simulation of Turbulent Flow in a Channel With Rib Roughness
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
372
388
.
31.
Leonardi
,
S.
,
Orlandi
.
P.
,
Djenidi
,
L.
, and
Antonia
,
R.
, 2003, “
Structure of Turbulent Channel Flow With Square Bars on One Wall
,”
Proceedings of the Third International Symposium on Turbulence and Shear Flow Phenomena
, Sendai, Japan, pp.
123
128
.
32.
Miyake
,
Y.
,
Tsujimoto
,
K.
, and
Nakaji
,
M.
, 2001, “
Direct Numerical Simulation of Rough-Wall Heat Transfer in a Turbulent Channel flow
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
237
244
.
33.
Chen
,
H.
,
Chen
,
D.
, and
Li
,
Y.
, 2006, “
Investigation on Effect of Surface Roughness Pattern to Drag Force Reduction Using Rotary Rheometer
,”
ASME J. Tribol.
0742-4787,
128
, pp.
131
138
.
34.
Naterer
,
G. F.
,
Glockner
,
P. S.
,
Thiele
,
D.
,
Chomokovski
,
S.
,
Venn
,
G.
, and
Richardson
,
G.
, 2005, “
Surface Micro-Grooves for Near-Wall Energy and Flow Control: Application to Aircraft Intake De-Icing
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
501
513
.
35.
Du
,
X. W.
,
Zou
,
J.
,
Fu
,
X.
,
Ji
,
H.
, and
Yang
,
H. Y.
, 2007, “
Effect of Throttling Grooves Structure on Cavitation Noise
,”
Zhejiang Daxue Xuebao
1009-3095,
41
, pp.
456
465
.
36.
Trevena
,
D. H.
, 1987,
Cavitation and Tension in Liquids
,
Adam Hilger
,
Philadelphia, PA
.
37.
Hammitt
,
F. G.
, 1980,
Cavitation and Multiphase Flow Phenomena
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.