We study the variation of the Froude number at the front of gravity currents developed in uniform channels whose cross-section shape depends on a parameter usually used in many numerical and theoretical models. The thickness and front velocity of the dense currents running on the bottom are greater for all the cases studied, resulting in a Froude number greater than that corresponding to the rectangular cross-section shape. The light currents developing along the upper boundary show the opposite trend. It is found that the results are not related to the depth and width of the channel. The relationships obtained agree with the results of laboratory experiments in which open and closed channels of different cross-section shapes are used.

1.
Simpson
,
J. E.
, 1997,
Gravity Currents: In the Environment and the Laboratory
,
Cambridge University
,
Cambridge
, p.
258
.
2.
Imberger
,
J.
, and
Hamblin
,
P. F.
, 1982, “
Dynamics of Lakes, Reservoirs and Cooling Pounds
,”
Annu. Rev. Fluid Mech.
0066-4189,
14
, pp.
153
187
.
3.
Farrell
,
G.
, and
Stefan
,
H.
, 1988, “
Mathematical Modeling of Plunging Reservoir Flows
,”
J. Hydraul. Res.
,
26
, pp.
525
537
. 0022-1686
4.
Britter
,
R. E.
, and
Linden
,
P. F.
, 1980, “
The Motion of the Front of a Gravity Current Travelling Down an Incline
,”
J. Fluid Mech.
0022-1120,
99
, pp.
531
543
.
5.
Alavian
,
V.
,
Jirka
,
G. H.
,
Denton
,
R. A.
,
Johnson
,
M. C.
, and
Stefan
,
H. G.
, 1992, “
Density Currents Entering Lakes and Reservoirs
,”
J. Hydrol. Eng.
,
118
, pp.
1464
1489
. 1084-0699
6.
Akiyama
,
J.
, and
Stefan
,
G.
, 1987, “
Onset of Underflow in Slightly Diverging Channels
,”
J. Hydrol. Eng.
,
113
, pp.
825
844
. 1084-0699
7.
Johnson
,
T. R.
,
Farell
,
G. J.
,
Ellis
,
C. R.
, and
Stefan
,
H. G.
, 1987, “
Negatively Buoyant Flow in a Diverging Channel. I: Flow Regimes
,”
J. Hydrol. Eng.
,
113
, pp.
716
730
. 1084-0699
8.
Johnson
,
T. R.
,
Ellis
,
C. R.
,
Farell
,
G. J.
, and
Stefan
,
H. G.
, 1987, “
Negatively Buoyant Flow in a Diverging Channel. II: 3-d Flow Field Descriptions
,”
J. Hydrol. Eng.
,
113
, pp.
731
742
. 1084-0699
9.
Johnson
,
T.
,
Ellis
,
C.
, and
Stefan
,
H.
, 1989, “
Negatively Buoyant Flow in Diverging Channel. IV: Entrainment and Dilution
,”
J. Hydrol. Eng.
,
115
, pp.
437
456
. 1084-0699
10.
Stefan
,
H.
, and
Johnson
,
T.
, 1989, “
Negatively Buoyant Flow in Diverging Channel. III: Onset of Underflow
,”
J. Hydrol. Eng.
,
115
, pp.
423
436
. 1084-0699
11.
Bournet
,
P. E.
,
Dartus
,
D.
,
Tassin
,
B.
, and
Vinçon-Leite
,
B.
, 1999, “
Numerical Investigation of Plunging Density Current
,”
J. Hydrol. Eng.
1084-0699,
125
, pp.
584
594
.
12.
Monaghan
,
J. J.
, 2007, “
Gravity Current Interaction With Interfaces
,”
Annu. Rev. Fluid Mech.
0066-4189,
39
, pp.
245
261
.
13.
Britter
,
R. E.
, and
Simpson
,
J. E.
, 1978, “
Experiments on the Dynamics of a Gravity Current
,”
J. Fluid Mech.
0022-1120,
88
, pp.
223
240
.
14.
Zhou
,
M.
, 1998, “
Influence of the Bottom Stress on the Two-Layer Flow Induced by Gravity Currents in Estuaries
,”
Estuarine Coastal Shelf Sci.
,
46
, pp.
811
825
. 0272-7714
15.
Nunes
,
R. A.
, and
Simpson
,
J. H.
, 1985, “
Axial Convergence in a Well Mixed Estuary
,”
Estuarine Coastal Shelf Sci.
0272-7714,
20
, pp.
637
649
.
16.
Wong
,
K. C.
, 1994, “
On the Nature of Transverse Variability in a Coastal Plain Estuary
,”
J. Geophys. Res.
,
99
, pp.
209
222
. 0148-0227
17.
Wong
,
K. C.
, and
Munchow
,
A.
, 1995, “
Buoyancy Forced Interaction Between Estuary and Inner Shelf-Observation
,”
Cont. Shelf Res.
0278-4343,
15
, pp.
59
88
.
18.
Valle-Levinson
,
A.
, and
Lwiza
,
K. M. M.
, 1995, “
The Effects of Channels and Shoals on Exchange Between the Chesapeake Bay and the Adjacent Ocean
,”
J. Geophys. Res.
0148-0227,
100
, pp.
18551
18563
.
19.
Engqvist
,
A.
, and
Hogg
,
A.
, 2004, “
Unidirectional Stratified Flow Through a Non-Rectangular Channel
,”
J. Fluid Mech.
,
509
, pp.
83
92
. 0022-1120
20.
Thomas
,
L. P.
, and
Marino
,
B. M.
, 2004, “
Lock-Exchange Flows in Non-Rectangular Cross-Section Channels
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
290
292
.
21.
Benjamin
,
T. B.
, 1968, “
Gravity Currents and Related Phenomena
,”
J. Fluid Mech.
0022-1120,
31
, pp.
209
248
.
22.
von Karman
,
T.
, 1940, “
The Engineer Grapples With Non-Linear Problems
,”
Bull. Am. Math. Soc.
0002-9904,
46
, pp.
615
683
.
23.
Lowe
,
R. J.
,
Rottman
,
J. W.
, and
Linden
,
P. F.
, 2002, “
A Laboratory Study of the Velocity Structure in an Intrusive Gravity Current
,”
J. Fluid Mech.
0022-1120,
456
, pp.
33
48
.
24.
Birman
,
V. K.
,
Martin
,
J. E.
, and
Meiburg
,
E.
, 2005, “
The Non-Boussinesq Lock-Exchange Problem. Part 2. High Resolution Simulation
,”
J. Fluid Mech.
0022-1120,
537
, pp.
125
144
.
25.
Marino
,
B. M.
,
Thomas
,
L. P.
, and
Linden
,
P. F.
, 2005, “
The Front Condition for Gravity Currents
,”
J. Fluid Mech.
,
536
, pp.
49
78
. 0022-1120
26.
Shin
,
J. O.
,
Dalziel
,
S. B.
, and
Linden
,
P. F.
, 2004, “
Gravity Currents Produced by Lock Exchange
,”
J. Fluid Mech.
0022-1120,
521
, pp.
1
34
.
27.
Simpson
,
J. E.
, and
Britter
,
R. E.
, 1979, “
The Dynamics of the Head of a Gravity Current Advancing Over a Horizontal Surface
,”
J. Fluid Mech.
0022-1120,
94
, pp.
477
495
.
28.
Hartel
,
C.
,
Meiburg
,
E.
, and
Necker
,
F.
, 2000, “
Analysis and Direct Numerical Simulation of the Flow at a Gravity-Current Head. Part 1. Flow Topology and Front Speed for Slip and No-Slip Boundaries
,”
J. Fluid Mech.
0022-1120,
418
, pp.
189
212
.
You do not currently have access to this content.