A thin liquid layer of a non-Newtonian film falling down an inclined plane that is subjected to nonuniform heating has been considered. The temperature of the inclined plane is assumed to be linearly distributed and the case when the temperature gradient is positive or negative is investigated. The film flow is influenced by gravity, mean surface tension, and thermocapillary forces acting along the free surface. The coupling of thermocapillary instability and surface-wave instabilities is studied for two-dimensional disturbances. A nonlinear evolution equation is derived by applying the long-wave theory, and the equation governs the evolution of a power-law film flowing down a nonuniformly heated inclined plane. The linear stability analysis shows that the film flow system is stable when the plate temperature decreases in the downstream direction while it is less stable for increasing temperature along the plate. Weakly nonlinear stability analysis using the method of multiple scales has been investigated and this leads to a secular equation of the Ginzburg–Landau type. The analysis shows that both supercritical stability and subcritical instability are possible for the film flow system. The results indicate the existence of finite-amplitude waves, and the threshold amplitude and nonlinear speed of these waves are influenced by thermocapillarity. The nonlinear evolution equation for the film thickness is solved numerically in a periodic domain in the supercritical stable region, and the results show that the shape of the wave is influenced by the choice of wave number, non-Newtonian rheology, and nonuniform heating.

1.
Chang
,
H. -C.
, 1994, “
Wave Evolution on a Falling Film
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
103
136
.
2.
Oron
,
A.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
, 1997, “
Long-Scale Evolution of Thin Liquid Films
,”
Rev. Mod. Phys.
0034-6861,
69
, pp.
931
980
.
3.
Yih
,
C. -S.
, 1963, “
Stability of Liquid Flow Down an Inclined Plane
,”
Phys. Fluids
1070-6631,
6
, pp.
321
334
.
4.
Benney
,
D. J.
, 1966, “
Long Waves on Liquid Films
,”
J. Math. Phys.
,
45
, pp.
150
155
. 0022-2488
5.
Lin
,
S. P.
, 1969, “
Finite-Amplitude Stability of a Parallel Flow With a Free Surface
,”
J. Fluid Mech.
0022-1120,
36
, pp.
113
126
.
6.
Gjevik
,
B.
, 1970, “
Occurrence of Finite Amplitude Surface Waves on Falling Liquid Films
,”
Phys. Fluids
,
13
, pp.
1918
1925
. 1070-6631
7.
Usha
,
R.
, and
Uma
,
B.
, 2003, “
Weakly Nonlinear Stability Analysis of Condensate/Evaporating Power-Law Liquid Film Down an Inclined Plane
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
70
, pp.
915
923
.
8.
Nepomnyashchy
,
A. A.
,
Velarde
,
M. G.
, and
Colinet
,
P.
, 2002,
Interfacial Phenomena and Convection
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
9.
Lin
,
S. P.
, 1975, “
Stability of a Liquid Down a Heat Incline Plane
,”
Lett. Heat Mass Transfer
0094-4548,
2
, pp.
361
370
.
10.
Sreenivasan
,
S.
, and
Lin
,
S. P.
, 1978, “
Surface Tension Driven Instabilities of a Liquid Film Flow Down a Heated Incline
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1517
1526
.
11.
Smith
,
M. K.
, and
Davis
,
S. H.
, 1983, “
Instabilities of Dynamic Thermocapillary Liquid Layers. Part 1. Convective Instabilities
,”
J. Fluid Mech.
0022-1120,
132
, pp.
119
144
.
12.
Smith
,
M. K.
, and
Davis
,
S. H.
, 1983, “
Instabilities of Dynamic Thermocapillary Liquid Layers. Part 2. Surface-Wave Instabilities
,”
J. Fluid Mech.
0022-1120,
132
, pp.
145
162
.
13.
Kelly
,
R. E.
,
Davis
,
S. H.
, and
Goussis
,
D. A.
, 1986, “
On the Instability of Heated Film Flow With Variable Surface Tension
,”
Proceedings of the Eighth International Heat Transfer Conference
,
C. L.
Tien
,
V. P.
Carey
, and
J. K.
Ferrell
, eds.,
Hemisphere
,
New York
, Vol.
4
, pp.
1937
1942
.
14.
Joo
,
S. W.
,
Davis
,
S. H.
, and
Bankoff
,
S. G.
, 1991, “
Long-Wave Instabilities of Heated Falling Films: Two-Dimensional Theory of Uniform Layers
,”
J. Fluid Mech.
0022-1120,
230
, pp.
117
146
.
15.
Goussis
,
D. A.
, and
Kelly
,
R. E.
, 1990, “
On the Thermocapillary Instabilities in a Liquid Layer Heated From Below
,”
Int. J. Heat Mass Transfer
0017-9310,
33
, pp.
2237
2245
.
16.
Goussis
,
D. A.
, and
Kelly
,
R. E.
, 1991, “
Surface Wave and Thermocapillary Instabilities in a Liquid Film Flow
,”
J. Fluid Mech.
0022-1120,
223
, pp.
25
45
.
17.
Kalliadasis
,
S.
,
Demekhin
,
E. A.
,
Ruyer-Quil
,
C.
, and
Velarde
,
M. G.
, 2003, “
Thermocapillary Instability and Wave Formation on a Film Flowing Down a Uniformly Heated Plane
,”
J. Fluid Mech.
0022-1120,
492
, pp.
303
338
.
18.
Colinet
,
P.
,
Legros
,
J. C.
, and
Velarde
,
M. G.
, 2001,
Nonlinear Dynamics of Surface-Tension-Driven Instabilities
,
Wiley
,
New York
.
19.
Smith
,
K. A.
, 1966, “
On Convective Instability Induced by Surface Gradients
,”
J. Fluid Mech.
0022-1120,
24
, pp.
401
414
.
20.
Burelbach
,
J. P.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
, 1988, “
Nonlinear Stability of Evaporating/Condensing Liquid Film
,”
J. Fluid Mech.
0022-1120,
195
, pp.
463
494
.
21.
Kabov
,
O. A.
, 1996, “
Heat Transfer From Small Heater to a Falling Liquid Film
,”
Heat Transfer Res.
,
27
, pp.
221
226
.
22.
Kabov
,
O. A.
,
Marchuk
,
I. V.
, and
Chupin
,
V. M.
, 1996, “
Thermal Imaging Study of the Liquid Film Flowing on Vertical Surface With Local Heat Source
,”
Russ. J. Eng. Thermophys.
1051-8053,
6
(
2
), pp.
105
138
.
23.
Kabov
,
O. A.
, and
Chinnov
,
E. A.
, 1997, “
Heat Transfer From a Local Heat Source to a Subcooled Falling Liquid Film Evaporating in a Vapor-Gas Medium
,”
Russ. J. Eng. Thermophys.
1051-8053,
7
, pp.
1
34
.
24.
Kabov
,
O. A.
, 1998, “
Formation of Regular Structures in a Falling Liquid Film Upon Local Heating
,”
Thermophys. Aeromechanics
0869-8643,
5
, pp.
547
551
.
25.
Kabov
,
O. A.
,
Legros
,
J. C.
,
Marchuk
,
I. V.
, and
Scheid
,
B.
, 2001, “
Deformation of the Free Surface in a Moving Locally-Heated Thin Liquid Layer
,”
Fluid Dyn.
0015-4628,
36
, pp.
521
528
.
26.
Zaitsev
,
D. V.
,
Kabov
,
O. A.
, and
Evseev
,
A. R.
, 2003, “
Measurement of Locally Heated Liquid Film Thickness by a Double-Fibre Optical Probe
,”
Exp. Fluids
0723-4864,
34
, pp.
748
754
.
27.
Kabov
,
O. A.
,
Scheid
,
B.
,
Sharina
,
I. A.
, and
Legros
,
J. C.
, 2002, “
Heat Transfer and Rivulet Structures Formation in a Falling Thin Liquid Film Locally Heated
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
664
672
.
28.
Frank
,
A. M.
and
Kabov
,
O. A.
, 2006, “
Thermocapillary Structure Formation in a Falling Film: Experiment and Calculations
,”
Phys. Fluids
1070-6631,
18
, p.
032107
.
29.
Gatapova
,
E. Ya.
,
Kabov
,
O. A.
, and
Marchuk
,
I. V.
, 2004, “
Thermocapillary Deformation of a Locally Heated Liquid Film Moving Under the Action of a Gas Flow
,”
Tech. Phys. Lett.
1063-7850,
30
, pp.
418
421
.
30.
Skotheim
,
J. M.
,
Thiele
,
U.
, and
Scheid
,
B.
, 2003, “
On the Instability of a Falling Film Due to Localized Heating
,”
J. Fluid Mech.
0022-1120,
475
, pp.
1
19
.
31.
Tan
,
M. J.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
, 1990, “
Steady Thermocapillary Flows of Thin Liquid Layers
,”
Phys. Fluids A
0899-8213,
2
, pp.
313
321
.
32.
Burelbach
,
J. P.
,
Bankoff
,
S. G.
, and
Davis
,
S. H.
, 1990, “
Steady Thermocapillary Flows of Thin Liquid Layers, II. Experiment
,”
Phys. Fluids
,
2
, pp.
322
333
. 1070-6631
33.
VanHook
,
S. J.
,
Schatz
,
M. F.
,
Swift
,
J. B.
,
McCormick
,
W. D.
, and
Swiney
,
H. L.
, 1997, “
Long Wavelength Surface-Tension Driven Benard Convection: Experiment and Theory
,”
J. Fluid Mech.
0022-1120,
345
, pp.
45
78
.
34.
Scheid
,
B.
,
Oron
,
A.
,
Colinet
,
P.
,
Thiele
,
U.
, and
Legros
,
J. C.
, 2002, “
Nonlinear Evolution of Non-Uniformly Heated Falling Liquid Films
,”
Phys. Fluids
1070-6631,
14
(
12
), pp.
4130
4151
.
35.
Kalitzova-Kurteva
,
P.
,
Slavtchev
,
S.
, and
Kurtev
,
I.
, 2000, “
Linear Instability in Liquid Layers on an Inclined, Non-Uniformly Heated Wall
,”
J. Theor. Appl. Mech.
,
30
, pp.
12
23
.
36.
Slavtchev
,
S.
,
Miladinova
,
S.
,
Lebon
,
G.
, and
Legros
,
J. C.
, 2001, “
Marangoni Effect on the Instability of Non-Uniformly Heated Falling Films
,”
Proceedings of the First International Symposium of Microgravity Research Applications in Physical Science and Biotechnology Energy Conservation Through Heat Transfer Enhancement of Heat
, Sorrento, Italy, Vol.
1
, pp.
33
40
,
Eur. Space Agency, [Spec. Publ.] ESA SP
-154 0379-6566.
37.
Miladinova
,
S.
,
Slavtchev
,
S.
,
Lebon
,
G.
, and
Legros
,
J. C.
, 2002, “
Long-Wave Instabilities of Non-Uniformly Heated Falling Films
,”
J. Fluid Mech.
0022-1120,
453
, pp.
153
175
.
38.
Miladinova
,
S.
,
Staykova
,
D.
,
Lebon
,
G.
, and
Scheid
,
B.
, 2002, “
Effect of Non-Uniform Wall Heating on the Three-Dimensional Secondary Instability of Falling Films
,”
Acta Mech.
0001-5970,
156
, pp.
79
91
.
39.
Kalliadasis
,
S.
,
Kiyashko
,
A.
, and
Demekhin
,
E. A.
, 2003, “
Marangoni Instability of a Thin Liquid Film Heated From Below by a Local Heatsource
,”
J. Fluid Mech.
0022-1120,
475
, pp.
377
408
.
40.
Demekhin
,
E. A.
,
Kalliadasis
,
S.
, and
Velarde
,
M. G.
, 2006, “
Suppressing Falling Film Instabilities by Marangoni Forces
,”
Phys. Fluids
1070-6631,
18
(
4
), p.
042111
.
41.
Sadiq
,
I. M. R.
, and
Usha
,
R.
, 2005, “
Linear Instability in a Thin Viscoelastic Liquid Film on an Inclined, Non-Uniformly Heated Wall
,”
Int. J. Eng. Sci.
,
43
, pp.
1435
1449
. 0020-7225
42.
Dandapat
,
B. S.
, and
Gupta
,
A. S.
, 1997, “
Long Waves on the Surface of a Viscoelastic Fluid Running Down an Inclined Plane
,”
Rheol. Acta
0035-4511,
36
, pp.
135
143
.
43.
Shaqfeh
,
E. S. G.
,
Larson
,
R. G.
, and
Fredrickson
,
G. H.
, 1989, “
The Stability of Gravity Driven Viscoelastic Film Flow at Low to Moderate Reynolds Number
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
31
, pp.
87
113
.
44.
Joo
,
S. W.
, 1994, “
The Stability and Nonlinear Flow Development of a Viscoelastic Draining Film With Shear Thinning
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
51
, pp.
125
140
.
45.
Miladinova
,
S.
,
Lebon
,
G.
, and
Toshev
,
E.
, 2004, “
Thin-Film Flow of a Power-Law Liquid Falling Down an Inclined Plane
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
122
, pp.
69
78
.
46.
Andersson
,
H. I.
, and
Irgens
,
F.
, 1988, “
Gravity-Driven Laminar Film Flow of Power-Law Fluids Along Vertical Walls
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
27
, pp.
153
172
.
47.
Hwang
,
C. C.
,
Chen
,
J. L.
,
Wang
,
J. S.
, and
Lin
,
J. S.
, 1994, “
Linear Stability of Power-Law Liquid Film Flow Down an Inclined Plane
,”
J. Phys. D
0022-3727,
27
, pp.
2297
2301
.
48.
Gorla
,
R. R.
, 2001, “
Rupture of Thin Power-Law Liquid Film on Cylinder
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
294
297
.
49.
Pascal
,
J. P.
, and
D’Alessio
,
S. J. D.
, 2007, “
Instability of a Power-Law Fluid Down an Incline Subjected to Wind Stress
,”
Appl. Math. Model.
,
31
, pp.
1229
1248
. 0307-904X
50.
Sathyagal
,
A. N.
, and
Narasimhan
,
G.
, 1992, “
On Rupture of a Thinning Film of Non-Newtonian Power-Law Fluid
,”
Chem. Eng. Commun.
,
111
, pp.
161
166
. 0098-6445
51.
Hwang
,
C. C.
, and
Chen
,
S. H.
, 1993, “
Rupture Theory of Thin Power-Law Liquid Films
,”
J. Appl. Phys.
0021-8979,
74
, pp.
2965
2967
.
52.
Perazzo
,
C. A.
, and
Gratton
,
J.
, 2003, “
Thin Film of Non-Newtonian Fluid on an Incline
,”
Phys. Rev. E
1063-651X,
67
, p.
016307
.
53.
Ng
,
C. O.
, and
Mei
,
C. C.
, 1994, “
Roll Waves on a Shallow Layer of Mud Modelled as Power-Law Fluid
,”
J. Fluid Mech.
0022-1120,
263
, pp.
151
183
.
54.
Sisoev
,
G. M.
,
Dandapat
,
B. S.
,
Matreyev
,
K. S.
, and
Mukhopadhyay
,
A.
, 2007, “
Bifurcation Analysis of the Travelling Waves on a Falling Power-Law Fluid Film
,”
J. Non-Newtonian Fluid Mech.
,
141
, pp.
128
137
. 0377-0257
55.
Dandapat
,
B. S.
, and
Mukhopadhyay
,
A.
, 2001, “
Waves on a Film of Power-Law Fluid Flowing Down an Inclined Plate at Moderate Reynolds Number
,”
Fluid Dyn. Res.
0169-5983,
29
, pp.
199
220
.
56.
Lin
,
J. S.
, and
Hwang
,
C. C.
, 2000, “
Finite Amplitude Long-Wave Instability of Power-Law Liquid Films
,”
Int. J. Non-Linear Mech.
0020-7462,
35
, pp.
769
777
.
57.
Scheid
,
B.
, 2004, “
Evolution and Stability of Falling Liquid Films With Thermocapillary Effects
,” Ph.D. thesis, Université Libre de Bruxelles, Belgium.
58.
Oron
,
A.
, and
Gottlieb
,
O.
, 2004, “
Subcritical and Supercritical Bifurcations of the First- and Second-Order Benney Equations
,”
J. Eng. Math.
0022-0833,
50
, pp.
121
140
.
59.
Joo
,
S. W.
, and
Davis
,
S. H.
, 1992, “
Instabilities of Three-Dimensional Viscous Falling Films
,”
J. Fluid Mech.
0022-1120,
242
, pp.
529
547
.
60.
Smith
,
G. D.
, 1986,
Numerical Solution of Partial Differential Equations: Finite Difference Methods
, 3rd ed.,
Oxford University Press
,
New York
.
You do not currently have access to this content.