This study has investigated the axial development of flow regime of adiabatic upward air-water two-phase flow in a vertical annulus. The inner and outer diameters of the annulus are 19.1 mm and 38.1 mm, respectively. The hydraulic diameter of the flow channel, DH, is 19.0 mm and the total length is 4.37 m. The flow regime map includes 72 flow conditions within a range of 0.01m/s<jg<30m/s and 0.2m/s<jf<3.5m/s, where jg and jf are, respectively, superficial gas and liquid velocities. The flow regime has been classified into four categories: bubbly, cap-slug, churn, and annular flows. In order to study the axial development of flow regime, area-averaged void fraction measurements have been performed using impedance void meters at three axial positions corresponding to z/DH=52, 149, and 230 simultaneously, where z represents the axial position. The flow regime indicator has been chosen to be statistical parameters from the probability distribution function of the area-averaged void fraction signals from the impedance meters, and self-organized neural networks have been used as the mapping system. This information has been used to analyze the axial development of flow regime as well as to check the predictions given by the existing flow regime transition models. The axial development of flow regime is quantified using the superficial gas velocity and void fraction values where the flow regime transition takes place. The predictions of the models are compared for each flow regime transition. In the current test conditions, the axial development of flow regime occurs in the bubbly to cap-slug (low superficial liquid velocities) and cap-slug to churn (high superficial liquid velocities) flow regime transition zones.

1.
Taitel
,
Y.
,
Barnea
,
D.
, and
Dukler
,
A. E.
, 1980, “
Modeling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
0001-1541,
26
, pp.
345
354
.
2.
Mishima
,
K.
, and
Ishii
,
M.
, 1984, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
5
), pp.
723
737
.
3.
Mishima
,
K.
, and
Hibiki
,
T.
, 1996, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
0301-9322,
22
, pp.
703
712
.
4.
Hibiki
,
T.
, and
Mishima
,
K.
, 2001, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Narrow Rectangular Channels
,”
Nucl. Eng. Des.
0029-5493,
203
, pp.
117
131
.
5.
Jones
,
O. C.
, and
Zuber
,
N.
, 1975, “
The Interrelation Between Void Fraction Fluctuations and Flow Patterns in Two-Phase Flow
,”
Int. J. Multiphase Flow
0301-9322,
2
, pp.
273
306
.
6.
Hubbard
,
N. G.
, and
Dukler
,
A. E.
, 1966, “
The Characterization of Flow Regimes for Horizontal Two-Phase Flow
,”
Proceedings of the 1996 Heat Transfer and Fluid
,
Mechanics Institute, Stanford University Press
,
Stanford
, pp.
100
121
.
7.
Tutu
,
N. K.
, 1982, “
Pressure Fluctuations and Flow Pattern Recognition in Vertical Two-Phase Gas-Liquid Flows
,”
Int. J. Multiphase Flow
0301-9322,
8
, pp.
443
447
.
8.
Matsui
,
G.
, 1984, “
Identification of Flow Regimes in Vertical Gas-Liquid Two-Phase Flow Using Differential Pressure Fluctuations
,”
Int. J. Multiphase Flow
0301-9322,
10
, pp.
711
720
.
9.
Cai
,
S.
,
Toral
,
H.
,
Qiu
,
J.
, and
Archer
,
J. S.
, 1994, “
Neural Network-Based Objective Flow Regime Identification in Air-Water Two-Phase Flow
,”
Can. J. Chem. Eng.
,
72
, pp.
440
445
. 0008-4034
10.
Barnea
,
D.
,
Shoham
,
O.
, and
Taitel
,
Y.
, 1980, “
Flow Pattern Characterization in 2-Phase Flow by Electrical Conductance Probe
,”
Int. J. Multiphase Flow
0301-9322,
6
, pp.
387
397
.
11.
Mi
,
Y.
,
Ishii
,
M.
, and
Tsoukalas
,
L. H.
, 1998, “
Vertical Two-Phase Flow Identification Using Advanced Instrumentation and Neural Networks
,”
Nucl. Eng. Des.
0029-5493,
184
, pp.
409
420
.
12.
Mi
,
Y.
,
Ishii
,
M.
, and
Tsoukalas
,
L. H.
, 2001, “
Flowregime Identification Methodology With Neural Networks and Two-Phase Flow Models
,”
Nucl. Eng. Des.
,
204
, pp.
87
100
. 0029-5493
13.
Lee
,
J. Y.
,
Ishii
,
M.
, and
Kim
,
N. S.
, 2008, “
Instantaneous and Objective Flow Regime Identification Method for the Vertical Upward and Downward Co-Current Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3442
3459
. 0017-9310
14.
Hernandez
,
L.
,
Julia
,
J. E.
,
Chiva
,
S.
,
Paranjape
,
S.
, and
Ishii
,
M.
, 2006, “
Fast Classification of Two-Phase Flow Regimes Based on Conductivity Signals and Artificial Neural Networks
,”
Meas. Sci. Technol.
,
17
, pp.
1511
1521
. 0957-0233
15.
Sharma
,
H.
,
Das
,
G.
, and
Samanta
,
A. N.
, 2006, “
ANN-Based Prediction of Two Phase Gas-Liquid Flow Patterns in a Circular Conduit
,”
AIChE J.
,
52
, pp.
3018
3028
. 0001-1541
16.
Xie
,
T.
,
Ghiaasiaan
,
S. M.
, and
Karrila
,
S.
, 2003, “
Flow Regime Identification in Gas-Liquid-Pulp Fiber Slurry Flows Based on Pressure Fluctuations Using Artificial Neural Networks
,”
Ind. Eng. Chem. Res.
,
42
, pp.
7017
7024
. 0888-5885
17.
Sadatomi
,
M.
, and
Sato
,
Y.
, 1982, “
Two-Phase Flow in Vertical Noncircular Channels
,”
Int. J. Multiphase Flow
0301-9322,
8
, pp.
641
655
.
18.
Furukawa
,
T.
, and
Sekoguchi
,
K.
, 1986, “
Phase Distribution for Air-Water Two-Phase Flow in Annuli
,”
Bull. JSME
,
29
, pp.
3007
3014
. 0021-3764
19.
Kelessidis
,
V. C.
, and
Dukler
,
A. E.
, 1989, “
Modeling Flow Pattern Transitions for Upward Gas-Liquid Flow in Vertical Concentric and Eccentric Annuli
,”
Int. J. Multiphase Flow
0301-9322,
15
, pp.
173
191
.
20.
Das
,
G.
,
Das
,
P. K.
,
Purohit
,
N. K.
, and
Mitra
,
A. K.
, 1999, “
Flow Pattern Transition During Gas Liquid Upflow Through Vertical Concentric Annuli. I. Experimental Investigations
,”
ASME Trans. J. Fluids Eng.
0098-2202,
121
, pp.
895
901
.
21.
Das
,
G.
,
Das
,
P. K.
,
Purohit
,
N. K.
, and
Mitra
,
A. K.
, 1999, “
Flow Pattern Transition During Gas Liquid Upflow Through Vertical Concentric Annuli—Part II: Mechanistic Models
,”
ASME Trans. J. Fluids Eng.
0098-2202,
121
, pp.
902
907
.
22.
Sun
,
X.
,
Kuran
,
S.
, and
Ishii
,
M.
, 2004, “
Cap Bubbly-to-Slug Flow Regime Transition in a Vertical Annulus
,”
Exp. Fluids
,
37
, pp.
458
464
. 0723-4864
23.
Hibiki
,
T.
,
Situ
,
R.
,
Mi
,
Y.
, and
Ishii
,
M.
, 2003, “
Experimental Study on Interfacial Area Transport in Vertical Upward Bubbly Two-Phase Flow in an Annulus
,”
Int. J. Heat Mass Transfer
,
46
, pp.
427
441
. 0017-9310
24.
Jeong
,
J. J.
,
Ozar
,
B.
,
Dixit
,
A.
,
Julia
,
J. E.
,
Hibiki
,
T. M.
, and
Ishii
,
M.
, 2008, “
Interfacial Area Transport of Vertical Upward Air-Water Two-Phase Flow in an Annulus Channel
,”
Int. J. Heat Fluid Flow
,
29
, pp.
178
193
. 0142-727X
25.
Ishii
,
M.
, and
Zuber
,
N.
, 1979, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE J.
0001-1541,
25
, pp.
843
855
.
26.
Wallis
,
G. B.
, 1969,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
, pp.
243
374
.
27.
Juliá
,
J. E.
,
Hernández
,
L.
,
Paranjape
,
S.
, and
Ishii
,
M.
, 2007, “
On the Use of Area-Averaged Void Fraction and Local Bubble Chord Length Entropies as Two-Phase Flow Regime Indicators
,”
Sixth International Conference on Multiphase Flow
, Germany.
28.
Hibiki
,
T.
, and
Ishii
,
M.
, 2000, “
Experimental Study on Hot-Leg U-Bend Two-Phase Natural Circulation in a Loop With a Large Diameter Pipe
,”
Nucl. Eng. Des.
,
195
, pp.
69
84
. 0029-5493
29.
Hibiki
,
T.
, and
Ishii
,
M.
, 2002, “
Development of One-Group Interfacial Area Transport Equation in Bubbly Flow Systems
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2351
2372
. 0017-9310
30.
Ozar
,
B.
,
Jeong
,
J. J.
,
Dixit
,
A.
,
Juliá
,
J. E.
,
Hibiki
,
T.
, and
Ishii
,
M.
, 2008, “
Flow Structure of Gas-Liquid Two-Phase Flow in an Annulus
,”
Chem. Eng. Sci.
,
63
, pp.
3998
4011
. 0009-2509
You do not currently have access to this content.