Destabilization and relaminarization phenomena have been investigated in an axially rotating circular duct. Standard k-ε model with modification for streamline curvature has been used in the numerical study. The laminar and turbulent velocity distributions at inlet have been observed to become turbulent and laminar, respectively, toward the exit of the pipe. A local velocity profile with parabolic or nearly uniform variation has been considered as the characteristic of laminarlike or turbulent flow, respectively, and changeover of flow from former to the later variation or vice versa has been taken to characterize destabilization and relaminarization, respectively. The predicted azimuthal velocity component was found to be reasonably accurate near the wall and not so encouraging in the core region of the swirling flow. The recirculation bubble generated by a central jet flow at the wall has been observed to reduce in size due to rotation of the pipe confirming the relaminarization phenomenon, whereas with laminar wall jet waspredicted recirculation bubble growing with rotation rate manifesting the destabilization effects.

1.
Laufer
,
J.
, 1954, “
The Structure of Turbulence in Fully-Developed Pipe Flow
,” NACA Report No. 1174.
2.
Talbot
,
L.
, 1954, “
Laminar Swirling Pipe Flow
,”
ASME J. Appl. Mech.
0021-8936, pp.
1
7
.
3.
Kiya
,
M.
,
Fukusako
,
S.
, and
Arie
,
M.
, 1971, “
Laminar Swirling Flow in the Entrance Region of a Circular Pipe
,”
JSME
0855-1146,
14
(
73
), pp.
659
670
.
4.
Kreith
,
F.
, and
Sonju
,
O. K.
, 1965, “
The Decay of a Turbulent Swirl in a Pipe
,”
J. Fluid Mech.
0022-1120,
22
, pp.
257
271
.
5.
Benton
,
G. S.
, 1956, “
The Effect of the Earth’s Rotation on Laminar Flow in Pipes
,”
ASME J. Appl. Mech.
0021-8936,
23
, pp.
123
127
.
6.
Faghri
,
A.
,
Gogineni
,
S.
, and
Thomas
,
S.
, 1993, “
Vapor Flow Analysis of an Axially Rotating Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
9
), pp.
2293
2303
.
7.
Faghri
,
A.
,
Gogineni
,
S.
, and
Cao
,
Y.
, 1995, “
Fluid Flow Analysis in an Axially Rotating Porous Pipe With Mass Injection at the Wall
,”
Numer. Heat Transfer, Part A
1040-7782,
28
, pp.
723
737
.
8.
Majumder
,
A. K.
,
Pratap
,
V. S.
, and
Spalding
,
D. B.
, 1977, “
Numerical Computation of Flow in Rotating Ducts
,”
ASME Trans. J. Fluids Eng.
0098-2202,
99
, pp.
148
153
.
9.
Howard
,
J. H.
,
Patankar
,
S. V.
, and
Bordynuik
,
R. M.
, 1980, “
Flow Prediction in Rotating Ducts Using Coriolis Modified Turbulence Models
,”
ASME Trans. J. Fluids Eng.
0098-2202,
102
, pp.
456
461
.
10.
Speizale
,
C. G.
,
Younis
,
B. A.
, and
Berger
,
S. A.
, 2000, “
Analysis and Modeling of Turbulent Flow in an Axially Rotating Pipe
,”
J. Fluid Mech.
0022-1120,
407
, pp.
1
26
.
11.
Launder
,
B. E.
, 1964, “
Laminarisation of the Turbulent Boundary Layer by Acceleration
,” MIT Gas Turbines Laboratory Report No. 77.
12.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1972, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
301
314
.
13.
Patel
,
V. C.
, and
Head
,
M. R.
, 1968, “
Reversion of Turbulent to Laminar Flow
,”
Aero. Res. Counc.
29 859-F.M.
pp.
3929
.
14.
Narashima
,
R.
, and
Sreenivasan
,
K. R.
, 1973, “
Re-Laminarization in Highly Accelerated Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
61
, pp.
417
447
.
15.
Sreenivasan
,
K. R.
, 1982, “
Laminarescent, Relaminarizing and Retransitional Flows
,”
Acta Mech.
0001-5970,
44
, pp.
1
48
.
16.
Murakami
,
M.
, and
Kikuyama
,
K.
, 1980, “
Turbulent Flow in Axially Rotating Pipes
,”
ASME Trans. J. Fluids Eng.
0098-2202,
102
, pp.
97
103
.
17.
Imao
,
S.
,
Itoh
,
M.
, and
Harada
,
T.
, 1996, “
Turbulent Characteristics of the Flow in an Axially Rotating Pipe
,”
Int. J. Heat Fluid Flow
0142-727X,
17
(
5
), pp.
444
451
.
18.
Reich
,
G.
, and
Beer
,
H.
, 1989, “
Fluid Flow and Heat Transfer in an Axially Rotating Pipe—I. Effect of Rotation on Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
3
), pp.
551
562
.
19.
Kikuyama
,
K.
,
Murakami
,
M.
,
Nishibori
,
K.
, and
Maeda
,
K.
, 1983, “
Flow in an Axially Rotating Pipe
,”
JSME
0855-1146,
26
(
214
), pp.
506
513
.
20.
Imao
,
S.
,
Zhang
,
Q.
, and
Yamada
,
Y.
, 1989, “
The Laminar Flow in the Developing Region of a Rotating Pipe
,”
JSME Int. J., Ser. II
0914-8817,
32
(
3
), pp.
317
323
.
21.
Leschziner
,
M. A.
, and
Rodi
,
W.
, 1981, “
Calculation of Annular and Twin Parallel Jets Using Various Discretization Schemes and Turbulence-Model Variations
,”
ASME Trans. J. Fluids Eng.
0098-2202,
103
, pp.
352
360
.
22.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
23.
Tumin
,
A.
, 1998, “
Subharmonic Resonance in a Laminar Wall Jet
,”
Phys. Fluids
1070-6631,
10
(
7
).
24.
Riley
,
N.
, 1958, “
Effects of Compressibility on a Laminar Wall Jet
,”
J. Fluid Mech.
0022-1120,
4
, pp.
615
628
.
25.
Das
,
M. K.
, and
Badjatiya
,
S.
, 2002, “
Conjugate Heat Transfer Study of Plane Laminar Wall Jet Flow
,”
12th International Comference
,
Grenoble
,
France
, Aug. Vol.
2
, p.
315
.
26.
Badjatiya
,
S.
, and
Das
,
M. K.
, 2003, “
Comparison of Heat Transfer Coefficient Correlation for Laminar Plane Wall Jet
,”
Sixth ASME JSME Thermal Engineering Joint Conference
, Mar. 16–20, HI.
27.
Kanna
,
P. R.
, and
Das
,
M. K.
, 2004, “
Conjugate Forced Convection Heat Transfer From a Laminar Plane Wall Jet Flow
,” presented in
17th National Heat & Mass Transfer Conference; Sixth ISHMT—ASME Heat & Mass Transfer Conference
,
Kalpakkam, India
, Jan. 5–7.
28.
Bajura
,
R. A.
, and
Szewezyk
,
A. A.
, 1970, “
Experimental Investigation of a Two-Dimensional Plane Wall-Jet
,”
Phys. Fluids
0031-9171,
13
, pp.
1653
1664
.
29.
Mele
,
P.
,
Morganti
,
M.
,
Scibilia
,
M. F.
, and
Lasek
,
A.
, 1986, “
Behaviour of Wall Jet in Laminar-to-Turbulent Transition
,”
AIAA J.
0001-1452,
24
, pp.
938
939
.
30.
Likachev
,
O.
, and
Tumin
,
A.
, 1996, “
Stability of a Compressible Laminar Wall Jet With Heat Transfer
,”
ASME Trans. J. Fluids Eng.
0098-2202,
118
, pp.
824
828
.
31.
Elghobashi
,
E. E.
,
Pun
,
W. N.
, and
Spalding
,
D. B.
, 1977, “
Concentration Fluctuation in Isothermal Turbulent Confined Coaxial Jets
,”
Chem. Eng. Sci.
0009-2509,
32
, pp.
161
166
.
32.
Quintana
,
D. L.
,
Amitay
,
M.
,
Ortega
,
A.
, and
Wygnanski
,
I. J.
, 1997, “
Heat Transfer in the Forced Laminar Wall Jet
,”
J. Heat Transfer
0022-1481,
119
, pp.
451
459
.
33.
Patankar
,
S. V.
, 1981,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
34.
Imao
,
S.
, 1981, “
Retransition Phenomenon of the Flow in an Axially Rotating Pipe
,”
Bull. Nagoya Inst. Tech.
,
33
, pp.
153
159
, in Japanese.
35.
Kitoh
,
O.
, 1991, “
Experimental Study of Turbulent Swirling Flow in a Straight Pipe
,”
J. Fluid Mech.
0022-1120,
225
, pp.
445
479
.
36.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
N. L.
, 1960,
Transport Phenomena
,
Wiley
,
New York
.
37.
Hirai
,
S.
,
Tagaki
,
T.
, and
Matsumoto
,
M.
, 1988, “
Predictions of the Laminarisation Phenomenon in an Axially Rotating Pipe Flow
,”
ASME Trans. J. Fluids Eng.
0098-2202,
110
, pp.
424
430
.
You do not currently have access to this content.