A random flow generation (RFG) algorithm for a previously established large eddy simulation (LES) code is successfully incorporated into a finite element fluid flow solver to generate the required inflow/initial turbulence boundary conditions for the three-dimensional (3D) LES computations of viscous incompressible turbulent flow over a nominally two-dimensional (2D) circular cylinder at Reynolds number of 140,000. The effect of generated turbulent inflow boundary conditions on the near wake flow and the shear layer and on the prediction of integral flow parameters is studied based on long time average results. Because the near-wall region cannot be resolved for high Reynolds number flows, no-slip velocity boundary function is used, but wall effects are taken into consideration with a near-wall modeling methodology that comprises the no-slip function with a modified form of van Driest damping approach to reduce the subgrid length scale in the vicinity of the cylinder wall. Simulations are performed for a 2D and a 3D configuration, and the simulation results are compared to each other and to the experimental data for different turbulent inflow boundary conditions with varying degree of inflow turbulence to assess the functionality of the RFG algorithm for the present LES code and, hence, its influence on the vortex shedding mechanism and the resulting flow field predictions.

1.
Achenbach
,
E.
, 1968, “
Distribution of Local Pressure Skin Friction Around a Circular Cylinder Flow up to Re=5×106
,”
J. Fluid Mech.
0022-1120,
109
, pp.
239
251
.
2.
Bearman
,
P. W.
, 1969, “
On Vortex Shedding From a Circular Cylinder in the Critical Reynolds Number Regime
,”
J. Fluid Mech.
0022-1120,
37
, pp.
577
585
.
3.
Farell
,
C.
, and
Blesmann
,
J.
, 1983, “
On Critical Flow Around Circular Cylinders
,”
J. Fluid Mech.
0022-1120,
136
, pp.
375
391
.
4.
Majumdar
,
S.
, and
Rodi
,
W.
, 1985, “
Numerical Calculations of Flow Past Circular Cylinder
,”
Proc. of 3rd Symposium on Numerical and Physical Aspects of Aerodynamic Flows
, Long Beach, CA, San Francisco, pp. 13–25.
5.
Bosch
,
G.
, and
Rodi
,
W.
, 1998, “
Simulation of Vortex Shedding Past a Square Cylinder With Different Turbulence Models
,”
Int. J. Numer. Methods Fluids
0271-2091,
28
, pp.
601
616
.
6.
Breuer
,
M. A.
, 2000, “
Challenging Test Case for Large Eddy Simulation: High Reynolds Number Circular Cylinder Flow
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
648
654
.
7.
Jordan
,
S. A.
, and
Ragab
,
S. A.
, 1998, “
A Large-Eddy Simulation of the Near Wake of a Circular Cylinder
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
243
252
.
8.
Tutar
,
M.
, and
Holdo
,
A. E.
, 2000, “
Large Eddy Simulation of a Smooth Circular Cylinder Oscillating Normal to a Uniform Flow
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
694
702
.
9.
Tutar
,
M.
, and
Holdo
,
A. E.
, 2001, “
Computational Modelling of Flow Around a Circular Cylinder in Sub-Critical Flow Regime With Various Turbulence Models
,”
Int. J. Numer. Methods Fluids
0271-2091,
35
, pp.
763
784
.
10.
Spalart
,
P. R.
, 1988, “
Direct Simulation of a Turbulent Boundary Layer up to Reθ=1410
,”
J. Fluid Mech.
0022-1120,
187
, pp.
61
81
.
11.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
, 1998, “
Generation of Turbulent Inflow Data for Spatially Developing Boundary Layer Simulations
,”
J. Comput. Phys.
0021-9991,
140
, pp.
233
258
.
12.
Lee
,
S.
,
Lele
,
S. K.
, and
Moin
,
P.
, 1992, “
Simulation of Spatially Evolving Turbulence and the Applicability of Taylor’s Hypothesis in Compressible Flow
,”
Phys. Fluids A
0899-8213,
4
, pp.
1521
1530
.
13.
Kondo
,
K.
,
Murakami
,
S.
, and
Mochida
,
A.
, 1997, “
Generation of Velocity Fluctuations for Inflow Boundary Conditions of LES
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
67–68
, pp.
51
64
.
14.
Celik
,
I.
,
Smirnov
,
A.
, and
Smith
,
J.
, 1999, “
Appropriate Initial and Boundary Conditions for LES of a Ship Wake
,”
Proc. of 3rd ASME/JFE Joint Fluids Engineering Conference
, San Francisco, ASME, New York, ASME Paper No. FEDSM99-7851, pp.
1
9
.
15.
Kraichnan
,
R. H.
, 1970, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids
0031-9171,
13
, pp.
22
31
.
16.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
, 2000, “
Random Flow Simulations With a Bubble Dynamic Model
,”
Proc. of FEDSM00 ASME Fluids Eng. Division Summer Meeting
, June 11–15, Boston, ASME, New York, pp.
1
8
.
17.
Rodi
,
W.
,
Ferziger
,
J. H.
,
Breuer
,
M.
, and
Pourquie
,
M.
, 1997, “
Status of Large Eddy Simulation: Results of Workshop
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
248
262
.
18.
de With
,
G.
,
Holdo
,
A. E.
, and
Huld
,
T. A.
, 2003, “
The Use of Dynamic Grid Adaptation Algorithms for the Modelling of Flow Around a Circular Cylinder in Sub-Critical Flow Regime
,”
Int. J. Numer. Methods Fluids
0271-2091,
41
, pp.
789
808
.
19.
Tutar
,
M.
, 1998, “
Computational Modelling of Vortex Shedding From Offshore Risers
,” Ph.D. dissertation, University of Hertfordshire, UK.
20.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
0027-0644,
91
, pp.
99
152
.
21.
Fluent
, 1998,
Fidap Users Manual Version 8.6
,
Fluent Inc.
, Lebanon, New Hampshire.
22.
van Driest
,
E. R.
, 1956, “
On The Turbulent Flow Near a Wall
,”
J. Aeronaut. Sci.
0095-9812,
23
, pp.
1007
1011
.
23.
Ramamurthy
,
A. S.
, and
Ng
,
C. P.
, 1973, “
Effect of Blockage a Steady Force Coefficients
,”
Proc. ASCE
, ASCE, New York, NY, EM4, pp.
755
772
.
24.
Cantwell
,
B.
, and
Coles
,
D.
, 1983, “
An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
0022-1120,
139
, pp.
321
374
.
25.
Beudan
,
P.
, and
Moin
,
P.
, 1994, “
Numerical Experiments on the Flow Past a Circular Cylinders at Sub-Critical Reynolds Numbers
,” Report No. TF-62, Thermosciences Division, Dept. of Mech. Eng., Stanford Univ.
26.
Franke
,
R.
, and
Rodi
,
W.
, 1993, “
Calculation of Vortex Shedding Past a Square Cylinder With Various Turbulence Models
,”
Turbulent Shear Flows
,
F.
Durst
et al.
, eds., Vol.
8
,
Springer
, New York, pp.
189
204
.
27.
Bouard
,
R.
, and
Coutanceau
,
M.
, 1980, “
The Early Stage of Development of The Wake Behind an Impulsively Started Cylinder for 40<Re<104
,”
J. Fluid Mech.
0022-1120,
101
(
3
), pp.
583
607
.
28.
Kato
,
C.
, and
Ikegawa
,
M.
, 1991, “
Large Eddy Simulation of Unsteady Turbulent Wake Flow of a Circular Cylinder Using the Finite Element Method
,” Advances in Numerical Simulation of Turbulent Flows, ASME 1991, FED-Vol. 117, pp.
49
56
.
29.
Fey
,
U.
,
Köning
,
M.
, and
Eckelmann
,
H.
, 1998, “
A New Strouhal-Reynolds Number Relationship for the Circular Cylinder in the Range 47<Re<2×105
,”
Phys. Fluids
1070-6631,
10
(
7
), pp.
1547
1549
.
30.
Zdravkovich
,
M. M.
, 1997,
Flow Around Circular Cylinders, Fundamentals 1
,
Oxford University Press
, London.
31.
Mittal
,
R.
, and
Balachandar
,
S.
, 1995, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,”
Phys. Fluids
1070-6631,
7
(
8
), pp.
1841
1865
.
You do not currently have access to this content.