The present study investigates turbulent boundary layer separation control by means of streamwise vortices with focus on the instantaneous vortex behavior. A turbulent boundary layer is exposed to a pressure gradient that generates a separation bubble with substantial backflow. The separation bubble is controlled by conventional passive vortex generators creating pairs of counterrotating vortices. Quantitative information is achieved by applying Particle Image Velocimetry (PIV) to the cross-stream plane of the vortices. The characteristics of a pair of counter-rotating vortices shed from a vortex generator is investigated in the near-field downstream of the vortex generator. The vortices were found to grow with the boundary layer in the downstream direction, and the maximum vorticity decreases as the circulation is conserved. The vortices are nonstationary, and the movements in the spanwise direction are larger than those in the wall-normal direction, due to the presence of the wall. The vortices fluctuate substantially and move over a spanwise distance, which is approximately equal to their size. The most probable instantaneous separation between the two vortices shed from one vortex generator equals the difference between their mean positions. The unsteadiness of the vortices contributes to the observed maxima in the Reynolds stresses around the mean vortex centers. The instantaneous vortex size and the instantaneous maximum vorticity are also fluctuating properties, and the instantaneous vortex is generally smaller and stronger than the mean vortex. A correlation was found between a large instantaneous vortex size and a low instantaneous maximum vorticity (and vice versa), suggesting that the vortices are subjected to vortex stretching.

1.
Simpson
,
R.
, 1989, “
Turbulent Boundary-Layer Separation
,”
Annu. Rev. Fluid Mech.
0066-4189,
21
, pp.
205
234
.
2.
Kiya
,
M.
,
Shimizu
,
M.
, and
Mochizuki
,
O.
, 1997, “
Sinusoidal Forcing of a Turbulent Separation Bubble
,”
J. Fluid Mech.
0022-1120,
342
, pp.
119
139
.
3.
Nakamura
,
Y.
, and
Ozono
,
S.
, 1987, “
The Effects of Turbulence on a Separated and Reattaching Flow
,”
J. Fluid Mech.
0022-1120,
178
, pp.
477
490
.
4.
Kalter
,
M.
, and
Fernholz
,
H. H.
, 2001, “
The Reduction and Elimination of a Closed Separation Region by Free-Stream Turbulence
,”
J. Fluid Mech.
0022-1120,
446
, pp.
271
308
.
5.
Fiedler
,
H. E.
, and
Fernholz
,
H.-H.
, 1990, “
On Management and Control of Turbulent Shear Flows
,”
Prog. Aerosp. Sci.
0376-0421,
27
(
4
), pp.
305
387
.
6.
Gad-El-Hak
,
M.
, and
Bushnell
,
D.
, 1991, “
Status and Outlook of Separation Control
,” AIAA Paper No. 91-0037.
7.
Gad-El-Hak
,
M.
, 2000,
Flow Control Passive, Active, and Reactive Flow Management
,
Cambridge University Press
,
Cambridge, England
.
8.
Taylor
,
H. D.
, 1948, “
Design Criteria for and Application of the Vortex Generator Mixing Principle
,” United Aircraft Corp. Report No. M-15038-1.
9.
Schubauer
,
G.
, and
Spangenberg
,
W.
, 1960, “
Forced Mixing in Boundary Layers
,”
J. Fluid Mech.
0022-1120,
8
, pp.
10
32
.
10.
Pearcey
,
H. H.
, 1961, “
Shock-Induced Separation and Its Prevention by Design and Boundary-Layer Control
,”
Boundary Layer and Flow Control, Its Principle and Applications
, Vol.
2
,
Lachmann
,
G. V.
, ed.,
Pergamon Press
,
London
.
11.
Smith
,
F. T.
, 1994, “
Theoretical Prediction and Design for Vortex Generators in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
270
, pp.
91
131
.
12.
Lin
,
J. C.
, 2000, “
Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation
,”
Prog. Aerosp. Sci.
0376-0421,
38
, pp.
389
420
.
13.
Rao
,
D.
, and
Kariya
,
T.
, 1988, “
Boundary-Layer Submerged Vortex Generators for Separation Control: An Exploratory Study
,” AIAA Paper No. 88-3546.
14.
Lin
,
J.
,
Howard
,
F.
, and
Selby
,
G.
, 1989, “
Turbulent Flow Separation Control Through Passive Techniques
,” AIAA Paper No. 89-0976.
15.
Lin
,
J. C.
,
Howard
,
F. G.
,
Bushnell
,
D. M.
, and
Selby
,
G. V.
, 1990, “
Investigation of Several Passive and Active Methods for Turbulent Separation Control
,” AIAA Paper No. 90-1598.
16.
Johnston
,
J. P.
, and
Nishi
,
M.
, 1990, “
Vortex Generator Jets: Means for Separation Control
,”
AIAA J.
0001-1452,
28
(
6
), pp.
989
994
.
17.
Lin
,
J.
, 1999, “
Application of Micro-Vortex Generators for Turbulent Flow Separation Control
,”
IUTAM Symposium on Mechanics of Passive and Active Flow Control
,
81
88
.
18.
Shabaka
,
I. M. M. A.
,
Mehta
,
R. D.
, and
Bradshaw
,
P.
, 1985, “
Longitudinal Vortices Imbedded in Turbulent Boundary Layers. Part 1. Single Vortex
,”
J. Fluid Mech.
0022-1120,
155
, pp.
37
57
.
19.
Mehta
,
R. D.
, and
Bradshaw
,
P.
, 1988, “
Longitudinal Vortices Imbedded in Turbulent Boundary Layers. Part 2. Vortex Pair With Common Flow Upwards
,”
J. Fluid Mech.
0022-1120,
188
, pp.
529
546
.
20.
Mehta
,
R. D.
, 1985, “
Effect of a Longitudinal Vortex on a Separated Turbulent Boundary Layer
,” AIAA Paper No. 85-0530. pp.
1
11
.
21.
Cutler
,
A.
, and
Bradshaw
,
P.
, 1989, “
Vortex∕Boundary Layer Interaction
,” AIAA Paper No. 89-0083, pp.
1
11
.
22.
Pauley
,
W. R.
, and
Eaton
,
J. K.
, 1988, “
Experimental Study of the Development of Longitudinal Vortex Pairs Embedded in a Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
26
(
7
), pp.
816
823
.
23.
Zhang
,
H.
,
Zhang
,
X.
,
Hurst
,
D.
, and
Collins
,
M. W.
, 1996, “
An LDA Study of Longitudinal Vortices Embedded in a Turbulent Boundary Layer
,”
8th International Symposium Applications of Laser Techniques to Fluid Mechanics
.
24.
Angele
,
K. P.
, and
Muhammad-Klingmann
,
B.
, 2005, “
The Effect of Streamwise Vortices on the Turbulence Structure of a Separating Boundary Layer
,”
Eur. J. Mech. B/Fluids
0997-7546,
24
(
5
), pp.
539
554
.
25.
Dengel
,
P.
, and
Fernholz
,
H.
, 1990, “
An Experimental Investigation of an Incompressible Turbulent Boundary Layer in the Vicinity of Separation
,”
J. Fluid Mech.
0022-1120,
212
, pp.
615
636
.
26.
Warnack
,
D.
, 1996, “
Eine Experimentelle Untersuchung Beschleunigter Turbulenter Wandgrenzschichten
,”
Dissertation, Technische Universität
, Berlin.
27.
Bradbury
,
L. J. S.
, and
Castro
,
I. P.
, 1971, “
A Pulsed-Wire Technique for Velocity Measurements in Highly Turbulent Flow
,”
J. Fluid Mech.
0022-1120,
22
, pp.
679
687
.
28.
Castro
,
I. P.
, 1992, “
Pulsed-Wire Anemometry
,”
Exp. Therm. Fluid Sci.
0894-1777,
5
, pp.
770
780
.
29.
Fernholz
,
H.-H.
,
Janke
,
G.
,
Schober
,
M.
,
Wagner
,
P. M.
, and
Warnack
,
D.
, 1996, “
New Developments and Applications of Skin-Friction Measuring Techniques
,”
Meas. Sci. Technol.
0957-0233,
7
, pp.
1396
1409
.
30.
Willert
,
C.
,
Raffel
,
M.
,
Kompenhans
,
J.
,
Stasicki
,
B.
, and
Kähler
,
C.
, 1996, “
Recent Applications of Particle Image Velocimetry in Aerodynamic Research
,”
Flow Meas. Instrum.
0955-5986,
7
(
3∕4
), pp.
247
256
.
31.
Westerweel
,
J.
, 1997, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1379
1392
.
32.
Angele
,
K.
, and
Muhammad-Klingmann
,
B.
, 2005, “
A Simple Model for the Effect of Peak-Locking on the Accuracy of Boundary Layer Turbulence Statistics in Digital PIV
,”
Exp. Fluids
0723-4864,
38
(
3
), pp.
341
347
.
33.
Keane
,
R.
, and
Adrian
,
R.
, 1992, “
Theory of Cross-Correlation in PIV
,”
Appl. Sci. Res.
0003-6994,
49
, pp.
191
215
.
34.
Angele
,
K.
, 2003, “
Experimental Studies of Turbulent Boundary Layer Separation and Control
,” Ph.D. thesis, Dept. of Mechanics, Royal Institute of Technology, Stockholm.
35.
Raffel
,
M.
,
Willert
,
C.
, and
Kompenhans
,
J.
, 1998,
Particle Image Velocimetry A Practical Guide
,
Springer-Verlag
,
Berlin
.
36.
Melling
,
A.
, 1997, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
0957-0233,
8
, pp.
1406
1416
.
37.
Robinson
,
S. K.
, 1991, “
Coherent Structures in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
0066-4189,
23
, pp.
601
639
.
38.
Bonnet
,
J. P.
,
Delville
,
J.
,
Glauser
,
M. N.
,
Antonia
,
R. A.
,
Bisset
,
D. K.
,
Cole
,
D. R.
,
Fiedler
,
H. E.
,
Garem
,
J. H.
,
Hilberg
,
D.
,
Jeong
,
J.
,
Kevlahan
,
N. K. R.
,
Ukeiley
,
L. S.
, and
Vincendeau
,
E.
, 1998, “
Collaborative Testing of Eddy Structure Identification Methods in Free Turbulent Shear Flows
,”
Exp. Fluids
0723-4864,
25
, pp.
197
225
.
39.
Delville
,
J.
, and
Bonnet
,
J.-P.
, 2000, “
Theme ERCOFTAC Bulletin No. 46: Eddy Structures Identification
,” Ercoftac Bull.,
46
.
40.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosejan
,
N.
, 2001, “
Combining PIV, Pod and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
1422
1429
.
41.
Scarano
,
F.
,
Benocci
,
C.
, and
Riethmuller
,
M. L.
, 1999, “
Pattern Recognition Analysis of the Turbulent Flow Past a Backward Facing Step
,”
Phys. Fluids
1070-6631,
11
(
12
), pp.
3808
3818
.
42.
Adrian
,
R. J.
,
Meinhart
,
C. D.
, and
Tomkins
,
C. D.
, 2000, “
Vortex Organization in the Outer Region of the Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
422
, pp.
1
54
.
43.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
66
94
.
44.
Wendt
,
B. J.
, 2001, “
Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators
,” NASA Glenn Technical Report No. NASA∕CR-2001-211144.
45.
Angele
,
K. P.
, and
Muhammad-Klingmann
,
B.
, 2006, “
PIV Measurements in a Weakly Separating and Reattaching Turbulent Boundary Layer
,”
Eur. J. Mech. B/Fluids
0997-7546,
25
(
2
), pp.
204
222
.
You do not currently have access to this content.