A new law of the wall accounting for curvature effects in swirling axial flows is derived. The influence of the curvature on the turbulence mixing lengths in both axial and tangential directions is examined theoretically using the Reynolds stress transport equations. For equilibrium flows with weak curvature, identical mixing lengths are derived for the axial and tangential directions. Additionally, the effect of finite local curvature and shear stress ratio on the near-wall velocities is systematically explored. It is found that the curvature effect in swirling axial flows is suppressed by a factor of 1(1+σw2) compared to that in curved channel flows, where σw is the ratio of the axial to swirl shear stress. For a given curvature radius, the maximum velocity deviation occurs when the axial-to-swirl shear stress ratio is zero. Finally, the performance of the new curvature law is evaluated by implementing it as a wall function in a well-established CFD code. The new wall function provides improved agreement for swirl velocity distributions inside labyrinth cavities in comparison with existing experimental laser Doppler anemometry measurements.

1.
Bradshaw
,
P.
, 1969, “
The Analogy Between Streamline Curvature and Buoyancy in Turbulent Shear Flow
,”
J. Fluid Mech.
0022-1120,
36
, pp.
177
191
.
2.
Bradshaw
,
P.
, 1973, “
Effect of Streamline Curvature on Turbulent Flows
,” AGARDogragh No. 169.
3.
Patel
,
V. C.
, 1969, “
Measurements of Secondary Flow in the Boundary Layer of a 180 Degree Curved Channel
,” ARC CP No. 1043, Aeronautical Research Council, London.
4.
Meroney
,
R. N.
, and
Bradshaw
,
P.
, 1975, “
Turbulent Boundary-Layer Growth Over a Longitudinally Curved Surface
,”
AIAA J.
0001-1452,
13
, pp.
1448
1453
.
5.
So
,
R. M. C.
, and
Mellor
,
G. L.
, 1973, “
Experiment on Convex Curvature Effects in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
60
, pp.
43
62
.
6.
So
,
R. M. C.
, and
Mellor
,
G. L.
, 1975, “
Experiment on Turbulent Boundary Layers on a Concave Wall
,”
Aeronaut. Q.
0001-9259,
XXVI
, pp.
25
40
.
7.
Hunt
,
I. A.
, and
Joubert
,
P. N.
, 1979, “
Effects of Small Streamline Curvature on Turbulent Duct Flow
,”
J. Fluid Mech.
0022-1120,
91
, pp.
633
659
.
8.
Gillis
,
J. C.
, and
Johnston
,
J. P.
, 1983, “
Turbulent Boundary Layer Flow and Structure on a Convex Wall and Its Redevelopment on a Flat Fall
,”
J. Fluid Mech.
0022-1120,
135
, pp.
123
153
.
9.
Muck
,
K. C.
,
Hoffmann
,
P. H.
, and
Bradshaw
,
P.
, 1985, “
The Effects of Convex Curvature on Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
161
, pp.
347
369
.
10.
Hoffmann
,
P. H.
,
Muck
,
K. C.
, and
Bradshaw
,
P.
, 1985, “
The Effects of Concave Surface Curvature on Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
161
, pp.
371
403
.
11.
Gibson
,
M. M.
, 1988, “
Effects of Surface Curvature on the Law of the Wall
,”
Near Wall Turbulence
,
S. J.
Kline
and
N. H.
Afgan
, eds.,
Hemisphere
, New York, pp.
157
171
.
12.
Barlow
,
R. S.
, and
Johnson
,
J. P.
, 1988, “
Structure of a Turbulent Boundary Layer on a Concave Surface
,”
J. Fluid Mech.
0022-1120,
191
, pp.
137
176
.
13.
Bradshaw
,
P.
, 1988, “
Effects of Extra Rates of Strain–Review
,”
Near Wall Turbulence
,
S. J.
Kline
and
N. H.
Afgan
, eds.,
Hemisphere
, New York.
14.
So
,
R. M. C.
, 1975, “
A Turbulent Velocity Scales for Curved Shear Flows
,”
J. Fluid Mech.
0022-1120,
70
, pp.
37
57
.
15.
So
,
R. M. C.
, 1975, “
Effects of Streamline Curvature on the Law of Wall
,”
Proceedings of 12th Annual Meeting, Society of Engineering Science
,
The University of Texas at Austin
, Texas, pp.
787
796
.
16.
So
,
R. M. C.
, 1977, “
Turbulent Velocity Scales for Swirling Flows
,”
Turbulence in Internal Flows
,
S. N. B.
Murthy
, ed.,
Hemisphere
, Washington DC, pp.
347
368
.
17.
Moser
,
R. D.
, and
Moin
,
P.
, 1987, “
The Effects of Curvature in Wall-bounded Turbulent Flows
,”
J. Fluid Mech.
0022-1120,
175
, pp.
479
510
.
18.
Patel
,
V. C.
, and
Sotiropoulos
,
F.
, 1997, “
Longitudinal Curvature Effects in Turbulent Boundary Layers
,”
Prog. Aerosp. Sci.
0376-0421,
33
, pp.
1
70
.
19.
Yamaguchi
,
H.
, 1992, “
Analysis of Turbulent Boundary Layer Controls on Convex and Concave Curvature Surfaces With Suction or Injection
,” ASME Fluids Engineering Paper No. FED-133.
20.
White
,
F. M.
, 1991,
Viscous Fluid Flow
, 2nd ed.
McGraw Hill
, New York, pp.
546
549
.
21.
Jayaram
,
M.
,
Taylor
,
M. W.
, and
Smits
,
A. J.
, 1987, “
The Responses of a Compressible Turbulent Boundary Layer to Short Regions of Concave Surface Curvature
,”
J. Fluid Mech.
0022-1120,
175
, pp.
343
362
.
22.
Wilcox
,
D. C.
, and
Chambers
,
T. L.
, 1977, “
Streamline Curvature Effects on Turbulent Boundary Layers
,”
AIAA J.
0001-1452,
15
, pp.
574
580
.
23.
Rodi
,
W.
, and
Scheuerer
,
G.
, 1983, “
Calculation of Curved Shear Layers With Two-Equation Turbulence Models
,”
Phys. Fluids
0031-9171,
26
, pp.
1422
1436
.
24.
Galperin
,
B.
, and
Kantha
,
L. H.
, 1989, “
Turbulence Model for Rotating Flows
,”
AIAA J.
0001-1452,
27
, pp.
750
757
.
25.
Kind
,
R. J.
,
Yowakim
,
F. M.
, and
Sjolander
,
S.
, 1989, “
The Law of the Wall for Swirling Flow in Annular Ducts
,”
ASME J. Fluids Eng.
0098-2202,
111
, pp.
160
164
.
26.
Kim
,
N.
, and
Rhode
,
D. L.
, 1999, “
Swirling Streamline-Curvature Law of the Wall From a Novel Perturbation Analysis
,”
Numer. Heat Transfer, Part B
1040-7790,
36
, pp.
331
350
.
27.
Childs
,
D. W.
, 1993,
Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis
,
Wiley
, New York, pp.
290
354
.
28.
Xi
,
J.
, and
Rhode
,
D. L.
, 2006, “
Rotordynamics of Impeller Eye Seals With Wear-Damaged Teeth in Centrifugal Compressors
,”
Tribol. Trans.
1040-2004,
49
, pp.
328
337
.
29.
Xi
,
J.
, and
Rhode
,
D. L.
, 2006, “
Rotordynamics of Turbine Labyrinth Seals With Rotor Axial Shifting
,”
Int. J. Rotating Mach.
1023-621X,
2006
, pp.
1
11
.
30.
Xi
,
J.
, and
Rhode
,
D. L.
, 2006, “
Seal-Inlet Disturbance Boundary Condition Correlations for Rotordynamics Models, Part 1: Correlation Development
,”
Tribol. Trans.
1040-2004,
49
, pp.
574
583
.
31.
Xi
,
J.
, and
Rhode
,
D. L.
, 2006, “
Seal-Inlet Disturbance Boundary Condition Correlations for Rotordynamics Models, Part 2: Assessment
,”
Tribol. Trans.
1040-2004,
49
, pp.
584
591
.
32.
Schwarz
,
S. G.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
, 1991, “
The Influence of Curvature on Film Cooling Performance
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
472
478
.
33.
So
,
R. M. C.
, and
Peskin
,
R. L.
, 1980, “
Comments on Extended Pressure-Strain Correlation Models
,”
ZAMP
0044-2275,
31
, pp.
56
65
.
34.
Piquet
,
J.
, and
Patel
,
V. C.
, 1999, “
Transverse Curvature Effects in Turbulent Boundary Layer
,”
Prog. Aerosp. Sci.
0376-0421,
35
, pp.
661
672
.
35.
Ellis
,
L. B.
, and
Joubert
,
P. N.
, 1974, “
Turbulent Shear Flow in a Curved Duct
,”
J. Fluid Mech.
0022-1120,
62
, pp.
65
84
.
36.
Morrison
,
G. L.
,
Winslow
,
R. B.
, and
Thames
,
H. D.
, 1995, “
Phase Averaged Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Measurement in a Whirling Annular Seal
,” ASME 95-GT-101.
37.
Morrison
,
G. L.
,
Johnson
,
M. C.
, and
Tatterson
,
G. B.
, 1988, “
Experimental Verification of a Secondary Recirculation Zone in a Labyrinth Seal
,” AIAA Pap. 88-3692-CP.
38.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flow
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
You do not currently have access to this content.