Suction was applied asymmetrically to the exhaust of a rectangular subsonic jet creating a pressure field capable of vectoring the primary flow at angles up to 15deg. The suction simultaneously creates low pressures near the jet exhaust and conditions capable of drawing a secondary flow along the jet shear layer in the direction opposite to the primary jet. This countercurrent shear layer is affected both by the magnitude of the suction source as well as the proximity of an adjacent surface onto which the pressure forces act to achieve vectoring. This confined countercurrent flow gives rise to elevated turbulence levels in the jet shear layer as well as considerable increases in the gradients of the turbulent stresses. The turbulent stresses are responsible for producing a pressure field conducive for vectoring the jet at considerably reduced levels of secondary mass flow than would be possible in their absence.

1.
Wing
,
D. J.
, 1994, “
Static Investigation of Two Fluidic Thrust-Vectoring Concepts on a Two-Dimensional Convergent Divergent Nozzle
,” NASA TM-4574.
2.
Chiarelli
,
C.
,
Johnsen
,
R. K.
, and
Shieh
,
C. F.
, 1993, “
Fluidic Scale Model Multi-Plane Thrust Vector Control Test Results
,” AIAA 93-2433.
3.
Fitzgerald
,
R. E.
, and
Kampe
,
R. F.
, 1983, “
Boundary Layer TVC for Missile Applications
,” AIAA Paper 83-1153.
4.
Carrol
,
G. R.
, and
Cox
,
H.
, 1983, “
A Missile Flight Control System Using Boundary Layer Thrust Vector Control
,” AIAA Paper 83-1149.
5.
Snow
,
B. H.
, 1990, “
Thrust Vectoring Control Concepts and Issues
,”
SAE Trans.
0096-736X,
99
, pp.
1488
1499
.
6.
Gilbert
,
B.
, 1991, “
Directional Control of Large Mass Flows by Fluidics
,” ASME 3rd International Symposium on Fluid Control, Measurement and Visualization, FLUCOME.
7.
Porzio
,
A. J.
, and
Franke
,
M. E.
, 1989, “
Experimental Study of a Confined Jet Thrust Vector Control Nozzle
,”
J. Propul. Power
0748-4658,
5
(
5
), pp.
596
601
.
8.
Smith
,
B. L.
, and
Glezer
,
A.
, 2002, “
Jet vectoring using synthetic jets
,”
J. Fluid Mech.
0022-1120,
458
, pp.
1
34
.
9.
Lim
,
D. M.
, and
Redekopp
,
L. G.
, 2002, “
Aerodynamic Flow-Vectoring for a Planar Jet in a Coflowing Stream
,”
J. Fluid Mech.
0022-1120,
450
, pp.
343
375
.
10.
Miller
,
D. N.
,
Yagle
,
P. J.
, and
Hamstra
,
J. W.
, 1999, “
Fluidic Throat Skewing for Thrust Vectoring in Fixed-Geometry Nozzles
,” AIAA 99-0365.
11.
Deere
,
K. A.
,
Berrier
,
B. L.
,
Flamm
,
J. D.
, and
Johnson
,
S. K.
, 2003, “
Computational Study of Fluidic Thrust Vectoring Using Separation Control in a Nozzle
,” AIAA-03-3803.
12.
Mason
,
S. M.
, and
Crowther
,
W. J.
, 2002, “
Fluidic Thrust Vectoring of Low Observable Aircraft
,” CEAS Aerospace Aerodynamics Research Conference. Cambridge, UK.
13.
Pack
,
L. G.
, and
Seifert
,
A.
, 2001, “
Periodic Excitation for Jet Vectoring and Enhanced Spreading
,”
J. Aircr.
0021-8669,
38
(
3
), pp.
486
495
.
14.
Van der Veer
,
M. R.
, and
Strykowski
,
P. J.
, 1997, “
Counterflow Thrust Vector Control of Subsonic Jets: Continuous and Bistable Regimes
,”
J. Propul. Power
0748-4658,
13
(
3
), pp.
412
420
.
15.
Strykowski
,
P. J.
,
Krothapalli
,
A.
, and
Forliti
,
D. J.
, 1996, “
Counterflow Thrust Vectoring of Supersonic Jets
,”
AIAA J.
0001-1452,
34
(
11
), pp.
2306
2314
.
16.
Alvi
,
F. S.
,
Strykowski
,
P. J.
,
Krothapalli
,
A.
, and
Forliti
,
D. J.
, 2000, “
Vectoring Thrust in Multiaxes using Confined Shear Layers
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
3
13
.
17.
Strykowski
,
P. J.
,
Schmid
,
G. F.
,
Alvi
,
F. S.
, and
Krothapalli
,
A.
, 1997, “
Vectoring Thrust Using Confined Shear Layers
,” AIAA 97-1997.
18.
Strykowski
,
P. J.
, and
Krothapalli
,
A.
, 1993, “
The Countercurrent Mixing Layer: Strategies for Shear-Layer Control
,” AIAA 93-3260.
19.
Washington
,
D. M.
,
Alvi
,
F. S.
,
Strykowski
,
P. J.
, and
Krothapalli
,
A.
, 1996, “
Multiaxis Fluidic Thrust Vector Control of a Supersonic Jet Using Counterflow
,”
AIAA J.
0001-1452,
34
(
8
), pp.
1734
1736
.
20.
Flamm
,
J. D.
, 1998, “
Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring
,” AIAA 98-3255.
21.
Hunter
,
C. A.
, and
Deere
,
K. A.
, 1999, “
Computational Investigation of Fluidic Counterflow Thrust Vectoring
,” AIAA 99-2669.
22.
Prasad
,
A. K.
,
Adrian
,
R. J.
,
Landreth
,
C. C.
, and
Offutt
,
P. W.
, 1992, “
Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation
,”
Exp. Fluids
0723-4864,
13
, pp.
105
116
.
23.
Gillgrist
,
R. D.
, 1999, “
A Fundamental Study of Thrust Vector Control Using Counterflow
,” M.S. thesis, University of Minnesota, Minneapolis, MN.
24.
Rabe
,
D.
, and
Sabroske
,
K.
, 1994, “
Laskin Nozzle Performance for Laser Flow Measurement Seeding
,” 32nd Aerospace Sciences Meeting, AIAA 94-0044.
25.
Forliti
,
D. J.
,
Tang
,
B. A.
, and
Strykowski
,
P. J.
, 2005, “
An Experimental Investigation of Planar Countercurrent Turbulent Shear Layers
,”
J. Fluid Mech.
0022-1120,
530
, pp.
241
264
.
26.
Adams
,
E. W.
, and
Johnston
,
J. P.
, 1988, “
Effects of the Separated Shear Layer on the Reattachment Flow Structure Part 1: Pressure and Turbulence Quantities
,”
Exp. Fluids
0723-4864,
6
, pp.
400
408
.
27.
Shapiro
,
A. H.
, 1953, “
The Dynamics and Thermodynamics of Compressible Fluid Flow
,”
Wiley
, New York, Chap. 6, Vol.
I
, pp.
159
186
.
You do not currently have access to this content.