Abstract

Turbulent drag reduction by dilute addition of high polymers is studied by considering local stretching of the molecular structure of a polymer by small-scale turbulent motions in the region very close to the wall. The stretching process is assumed to restructure turbulence at small scales by forcing these to satisfy local axisymmetry with invariance under rotation about the axis aligned with the main flow. It can be shown analytically that kinematic constraints imposed by local axisymmetry force turbulence near the wall to tend towards the one-component state and when turbulence reaches this limiting state it must be entirely suppressed across the viscous sublayer. For the limiting state of wall turbulence, the statistical dynamics of the turbulent stresses, constructed by combining the two-point correlation technique and invariant theory, suggest that turbulent drag reduction by homogeneously distributed high polymers, cast into the functional space which emphasizes the anisotropy of turbulence, resembles the process of reverse transition from the turbulent state towards the laminar flow state. These findings are supported by results of direct numerical simulations of wall-bounded turbulent flows of Newtonian and non-Newtonian fluids and by experiments carried out, under well-controlled laboratory conditions, in a refractive index-matched pipe flow facility using state-of-the art laser-Doppler anemometry. Theoretical considerations based on the elastic behavior of a polymer and spatial intermittency of turbulence at small scales enabled quantitative estimates to be made for the relaxation time of a polymer and its concentration that ensure maximum drag reduction in turbulent pipe flows, and it is shown that predictions based on these are in very good agreement with available experimental data.

1.
Metzner
,
A. B.
and
Park
,
M. G.
, 1964, “
Turbulent flow characteristics of viscoelastic fluids
,”
J. Fluid Mech.
0022-1120,
20
, pp.
291
303
.
2.
Lumley
,
J. L.
, 1969, “
Drag reduction by additives
,”
Annu. Rev. Fluid Mech.
0066-4189,
1
, pp.
367
384
.
3.
Lumley
,
J. L.
, 1973, “
Drag reduction in turbulent flow by polymer additives
,”
J. Polym. Sci. Macromol. Rev.
0076-2083,
7
, pp.
290
363
.
4.
Virk
,
P. S.
, 1975, “
Drag reduction fundamentals
,”
AIChE J.
0001-1541,
21
, pp.
625
656
.
5.
Berman
,
N. S.
, 1978, “
Drag reduction by polymers
,”
Annu. Rev. Fluid Mech.
0066-4189,
10
, pp.
47
64
.
6.
Tabor
,
M.
, and
de Gennes
,
P. G.
, 1986, “
A cascade theory of drag reduction
,”
Europhys. Lett.
0295-5075,
2
, pp.
519
522
.
7.
Ryskin
,
G.
, 1987, “
Turbulent drag reduction by polymers: a quantitative theory
,”
Phys. Rev. Lett.
0031-9007,
59
, pp.
2059
2062
.
8.
Thirumalai
,
D.
, and
Bhattacharjee
,
J. K.
, 1996, “
Polymer-induced drag reduction in turbulent flows
,”
Phys. Rev. E
1063-651X,
53
, pp.
546
551
.
9.
Sreenivasan
,
K. R.
, and
White
,
C. M.
, 2000, “
The onset of drag reduction by dilute polymer additives and the maximum drag reduction asymptote
,”
J. Fluid Mech.
0022-1120,
409
, pp.
149
164
.
10.
Rudd
,
M. J.
, 1972, “
Velocity measurements with a laser-Doppler meter on the turbulent flow of a dilute polymer solution
,”
J. Fluid Mech.
0022-1120,
51
, pp.
673
685
.
11.
Logan
,
S. E.
, 1972, “
Laser velocimeter measurements of Reynolds stress in dilute polymer solutions
,”
AIAA J.
0001-1452,
10
, pp.
962
964
.
12.
Reischman
,
M. A.
, and
Tiederman
,
W. G.
, 1975, “
Laser-Doppler anemometer measurements in drag reduction g channel flow
,”
J. Fluid Mech.
0022-1120,
70
, pp.
369
392
.
13.
Luchik
,
T. S.
, and
Tiederman
,
W. G.
, 1988, “
Turbulent structure in low-concentration drag-reducing channel flow
,”
J. Fluid Mech.
0022-1120,
198
, pp.
241
263
.
14.
Walker
,
D. T.
, and
Tiederman
,
W. G.
, 1990, “
Turbulent structure in a channel flow with polymer injection at the wall
,”
J. Fluid Mech.
0022-1120,
204
, pp.
377
403
.
15.
Willmarth
,
W. W.
,
Wei
,
T.
and
Lee
,
O.
, 1987, “
Laser anemometer measurements of Reynolds stress in a turbulent channel flow with drag reducing polymer additives
,”
Phys. Fluids
0031-9171,
30
, pp.
933
935
.
16.
Wei
,
T.
, and
Willmarth
,
W. W.
, 1992, “
Modifying turbulent structure with drag-reducing polymer additives in turbulent channel flows
,”
J. Fluid Mech.
0022-1120,
245
, pp.
619
641
.
17.
Warholic
,
M. D.
,
Massah
,
H.
, and
Hanratty
,
T. J.
, 1999, “
Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing
,”
Exp. Fluids
0723-4864,
27
, pp.
461
472
.
18.
den Toonder
,
J. M. J.
,
Hulsen
,
M. A.
,
Kuiken
,
G. D. C.
, and
Nieuwstadt
,
F.
, 1997, “
Drag reduction by polymer additives in turbulent pipe flow: numerical and laboratory experiments
,”
J. Fluid Mech.
0022-1120,
337
, pp.
193
231
.
19.
Sureshkumar
,
R.
,
Beris
,
A. N.
, and
Handler
,
R. A.
, 1997, “
Direct numerical simulations of turbulent channel flow of a polymer solution
,”
Phys. Fluids
1070-6631,
9
, pp.
743
755
.
20.
Dimitropoulos
,
C. D.
,
Sureshkumar
,
R.
, and
Beris
,
A. N.
, 1998, “
Direct numerical simulation of viscoelastic turbulent channel exhibiting drag reduction: effect of the variation of rheological parameters
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
79
, pp.
433
468
.
21.
Sibilla
,
S.
, and
Baron
,
A.
, 2002, “
Polymer stress statistics in the near-wall turbulent flow of a drag-reducing solution
,”
Phys. Fluids
1070-6631,
14
, pp.
1123
1136
.
22.
Angelis
,
E. D.
,
Casciola
,
C. M.
, and
Piva
,
R.
, 2002, “
DNS of wall turbulence: dilute polymers and self-sustaining mechanisms
,”
Comput. Fluids
0045-7930,
31
, pp.
495
507
.
23.
Dubief
,
Y.
,
White
,
C. M.
,
Terrapon
,
V. E.
,
Shaqfeh
,
E. S. G.
,
Moin
,
P.
, and
Lele
,
S. K.
, 2004, “
On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows
,”
J. Fluid Mech.
0022-1120,
514
, pp.
271
280
.
24.
Jovanović
,
J.
, 2004,
The Statistical Dynamics of Turbulence
,
Springer-Verlag
, Berlin.
25.
Jovanović
,
J.
, and
Hillerbrand
,
R.
, 2005, “
On peculiar properties of the velocity fluctuations in wall-bounded flows
,”
J. Therm. Sci.
1003-2169,
9
, pp.
3
12
.
26.
Lumley
,
J. L.
, and
Newman
,
G.
, 1977, “
The return to isotropy of homogeneous turbulence
,”
J. Fluid Mech.
0022-1120,
82
, pp.
161
178
.
27.
Lumley
,
J. L.
, 1978, “
Computational modeling of turbulent flows
,”
Adv. Appl. Mech.
0065-2156,
18
, pp.
123
176
.
28.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, 1987, “
Turbulence statistics in a fully developed channel flow at low Reynolds numbers
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
29.
Antonia
,
R. A.
,
Teitel
,
M.
,
Kim
,
J.
, and
Browne
,
L. W. B.
, 1992, “
Low-Reynolds-number effects in a fully developed turbulent channel flow
,”
J. Fluid Mech.
0022-1120,
236
, pp.
579
605
.
30.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
, 1999, “
Direct numerical simulation of turbulent channel flow up to Reτ =590
,”
Phys. Fluids
1070-6631,
11
, pp.
943
945
.
31.
Gilbert
,
N.
, and
Kleiser
,
L.
, 1991, “
Turbulence model testing with the aid of direct numerical simulation results
,”
Proc. Eighth Symp. on Turbulent Shear Flows
, Munich, pp.
26.1.1
26.1.6
.
32.
Horiuti
,
K.
, 1992, “
Establishment of the direct numerical simulation data base of turbulent transport phenomena
,” Ministry of Education, Science and Culture Japan, Co-operative Research No. 012302043, http://www.thtlab.t.u-tokyo.ac.jp/http://www.thtlab.t.u-tokyo.ac.jp/.
33.
Kuroda
,
A.
,
Kasagi
,
N.
, and
Hirata
,
M.
, 1993, “
Direct numerical simulation of the turbulent plane Couette-Poiseulle flows: effect of mean shear on the near wall turbulence structures
,”
Proc. Ninth Symp. on Turbulent Shear Flows
, Kyoto, pp.
8.4.1
-
8.4.6
, http://www.thtlab.t.u-tokyo.ac.jp/http://www.thtlab.t.u-tokyo.ac.jp/.
34.
Jovanović
,
J.
,
Hillerbrand
,
R.
, and
Pashtrapanska
,
M.
, 2001, “
Mit statistischer DNS-Datenanalyse der Enstehung von Turbulenz auf der Spur
,”
KONWIHR Q.
31
, pp.
6
8
.
35.
Schenck
,
T.
, and
Jovanović
,
J.
, 2002, “
Measurements of the instantaneous velocity gradients in plane and axisymmetric wake flows
.”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
143
153
.
36.
Antonia
,
R. A.
,
Kim
,
J.
, and
Browne
,
L. W. B.
, 1991, “
Some characteristics of small-scale turbulence in a turbulent duct flow
,”
J. Fluid Mech.
0022-1120,
233
, pp.
369
388
.
37.
Chou
,
P. Y.
, 1945, “
On the velocity correlation and the solution of the equation of turbulent fluctuation
,”
Q. Appl. Math.
0033-569X,
3
, pp.
38
54
.
38.
Kolovandin
,
B. A.
, and
Vatutin
,
I. A.
, 1969, “
On statistical theory of non-uniform turbulence
,”
Int. J. Heat Mass Transfer
0017-9310, Herceg-Novi, Yugoslavia.
39.
Jovanović
,
J.
,
Otić
,
I.
, and
Bradshaw
,
P.
, 2003, “
On the anisotropy axisymmetric strained turbulence in the dissipation range
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
1
13
.
40.
Monin
,
A. S.
, and
Yaglom
,
A. M.
, 1987,
The Statistical Fluid Mechanics
, Vol.
1
,
MIT Press
, Cambridge, MA.
41.
George
,
W. K.
, and
Hussein
,
H. J.
, 1991, “
Locally axisymmetric turbulence
,”
J. Fluid Mech.
0022-1120,
233
, pp.
1
23
.
42.
Jovanović
,
J.
,
Ye
,
Q.-Y.
, and
Durst
,
F.
, 1995, “
Statistical interpretation of the turbulent dissipation rate in wall-bounded flows
,”
J. Fluid Mech.
0022-1120,
293
, pp.
321
347
.
43.
Durst
,
F.
,
Jovanović
,
J.
, and
Sender
,
J.
, 1995, “
LDA measurements in the near-wall region of a turbulent pipe flow
,”
J. Fluid Mech.
0022-1120,
295
, pp.
305
335
.
44.
Fischer
,
M.
,
Jovanović
,
J.
, and
Durst
,
F.
, 2001, “
Reynolds number effects in the near-wall region of turbulent channel flows
,”
Phys. Fluids
1070-6631,
13
, pp.
1755
1767
.
45.
Durst
,
F.
,
Hass
,
R.
,
Interhal
,
W.
, and
Keck
,
T.
, 1982, “
Polymerwirkung in Strömungen-Mechanismen und praktische Anwendungen
,”
Chem.-Ing.-Tech.
0009-286X,
54
, pp.
213
221
.
46.
Jovanović
,
J.
, and
Pashtrapanska
,
M.
, 2005, “
On the criterion for the determination transition onset and breakdown to turbulence in wall-bounded flows
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
626
633
47.
Kolmogorov
,
A. N.
, 1941, “
Local structure of turbulence in an incompressible fluid at very high Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
0002-3264,
30
,
299
303
.
48.
Sreenivasan
,
K. R.
, 1984, “
On the scaling of the turbulence energy dissipation rate
,”
Phys. Fluids
0031-9171,
27
, pp.
1048
1051
.
49.
Hinze
,
J. O.
, 1975,
Turbulence
, 2nd ed.,
McGraw-Hill
, New York.
50.
Rotta
,
J.
, 1951,
Statistische Theorie nichthomogener Turbulenz
,”
Z. Phys.
0044-3328
129
, pp.
547
572
.
51.
Batchelor
,
G. K.
, and
Townsend
,
A. A.
, 1947, “
Decay of vorticity in isotropic turbulence
,”
Proc. R. Soc. London, Ser. A
1364-5021,
190
, p.
534
.
52.
Kuo
,
A. Y.
, and
Corrsin
,
S.
, 1971, “
Experiments on internal intermittency and fine-structure distribution functions in fully turbulent fluid
,”
J. Fluid Mech.
0022-1120,
50
, pp.
285
319
.
53.
Tilli
,
M.
,
Maaranen
,
J.
,
Timonen
,
J.
,
Kataja
,
M.
, and
Korppi-Tommola
,
J.
, 2003, “
Effect mechanisms of DR molecules
,” Technical Report, University of Jyväskylä, Finland.
54.
Durst
,
F.
,
Fischer
,
M.
,
Jovanović
,
J.
, and
Kikura
,
H.
, 1998, “
Methods to set up and investigate low Reynolds number, fully developed turbulent plane channel flows
,
ASME J. Fluids Eng.
0098-2202,
120
, pp.
496
503
.
55.
Mansour
,
N. N.
,
Moser
,
R. D.
, and
Kim
,
J.
, 1998, “
Fully developed turbulent channel flow simulations
,” in AGARD Advisory Report 345, pp.
119
121
.
56.
Eggels
,
J. G. M.
,
Unger
,
F.
,
Weiss
,
M. H.
,
Westerweel
,
J.
,
Adrian
,
R. J.
,
Friedrich
,
R.
, and
Nieuwstadt
,
F. T. M.
, 1994, “
Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment
,”
J. Fluid Mech.
0022-1120,
268
, pp.
175
209
.
57.
Lammers
,
P.
, 2004, “
Direct numerical simulations of wall-bounded flows at low Reynolds numbers using the lattice Boltzmann method
, Ph.D. thesis, Friedrich-Alexander University Erlangen-Nuremberg, Germany, pp.
47
72
.
58.
Koskinen
,
K. K.
, 2004, “
On investigating turbulent reactive flows: case studies of combustion and drag reduction by polymer additives
,” ongoing Ph.D. thesis, Tampere University of Technology, Tampere, Finland.
You do not currently have access to this content.