Numerical studies are reported on the vortex breakdown in a differentially-rotating cylindrical container in which the top endwall rotates at a high angular velocity and the cylinder and bottom endwall rotate at a low angular velocity Critical boundaries and the location and size of the vortex breakdown bubble are quite different from the case when the top endwall rotates and the cylinder and the bottom endwall are stationary. As is increased, the breakdown bubble moves toward downstream for whereas the bubble moves toward upstream for The Brown and Lopez criterion is extended to a differentially-rotating container.
Issue Section:
Technical Papers
1.
Vogel, H. U., 1968, “Experimetelle Ergebnisse ueber die Laminare Stroemung in einen zylindrischen Gehaeuse mit darin rotierender Scheibe,” Max-Planck-Institut fuer Stroemungsforschung, Goertingen, Bericht 6.
2.
Escudier
, M. P.
, 1984
, “Observations of the Flow Produced in a Cylindrical Container by a Rotating Endwall
,” Exp. Fluids
, 2
, pp. 189
–196
.3.
Lugt
, H. J.
, and Hasussling
, H. J.
, 1982
, “Axisymmetric Vortex Breakdown in Rotating Fluid Within a Container
,” Trans. ASME, J. Appl. Mech.
, 49
, pp. 921
–923
.4.
Lugt
, H. J.
, and Abboud
, M.
, 1987
, “Axisymmetric Vortex Breakdown With and Without Temperature Effects in a Container With a Rotating Lid
,” J. Fluid Mech.
, 179
, pp. 179
–200
.5.
Duabe
, O.
, and Sorensen
, J. N.
, 1989
, “Simulation Numerique de l’Ecoulement Periodique Axisymetrique Dans une Cavite Cylindrique
,” Acad. Sci., Paris, C. R.
, 308
, pp. 463
–469
.6.
Lopez
, J. M.
, 1990
, “Axisymmetric Vortex Breakdown. Part 1. Confined Swirling Flow
,” J. Fluid Mech.
, 221
, pp. 533
–552
.7.
Brown
, G. L.
, and Lopez
, J. M.
, 1990
, “Axisymmetric Vortex Breakdown. Part 2. Physical Mechanisms
,” J. Fluid Mech.
, 221
, pp. 553
–576
.8.
Tsitverbilt
, N.
, 1993
, “Vortex Breakdown in a Cylindrical Container in the Light Continuaton of a Steady Solution
,” Fluid Dyn. Res.
, 11
, pp. 19
–35
.9.
Sotiropoulos
, F.
, and Ventikos
, Y.
, 2001
, “The Three-Dimensional Structure of Confined Swirling Flows With Breakdown
,” J. Fluid Mech.
, 426
, pp. 155
–175
.10.
Fujimura
, K.
, Yoshizawa
, H.
, Iwatsu
, R.
, Koyama
, H. S.
, and Hyun
, J. M.
, 2001
, “Velocity Measurements of Vortex Breakdown in an Enclosed Cylinder
,” ASME J. Fluids Eng.
, 123
, pp. 604
–611
.11.
Roesner, K. G., 1989, “Recirculation Zones in a Cylinder With Rotating Lid,” Topological Fluid Mechanics, Proceedings of the IUTAM Symposium, edited by A. Tsinober and H. K. Moffat, Cambridge University Press, CA, pp. 699–708.
12.
Bar-Yoseph
, P. Z.
, Solan
, A.
, and Roesner
, K. G.
, 1990
, “Recirculation Zones in a Cylinder With Rotating Lid
,” Z. Angew. Math. Mech.
, 70
, pp. 442
–444
.13.
Valentine
, D. T.
, and Jahnke
, C. C.
, 1994
, “Flows Induced in a Cylinder With Both Endwalls Rotating
,” Phys. Fluids
, 6
, pp. 2702
–2710
.14.
Gelfgat
, A. Yu.
, Bar-Yoseph
, P. Z.
, and Solan
, A.
, 1996
, “Steady States and Oscillatory Instability of Swirling Flow in a Cylinder With Rotating Top and Bottom
,” Phys. Fluids
, 8
, pp. 2614
–2625
.15.
Watson
, J. P.
, and Neitzel
, G. P.
, 1996
, “Numerical Evaluation of a Vortex-Breakdown Criterion
,” Phys. Fluids
, 8
, pp. 3063
–3071
.16.
Fujimura
, K.
, Koyama
, H. S.
, and Hyun
, J. M.
, 2004
, “An Experimental Study on Vortex Breakdown in a Differentially Rotating Cylindrical Container
,” Exp. Fluids
, 36
, pp. 339
–407
.17.
Jahnke
, C. C.
, and Valentine
, D. T.
, 1998
, “Recirculation Zones in a Cylindrical Container
,” ASME Trans. J. Fluids Eng.
, 120
, pp. 680
–684
.18.
Spohn
, A.
, Mory
, M.
, and Hopfinger
, E. J.
, 1998
, “Experiments on Vortex Breakdown in a Confined Flow Generated by a Rotating Disk
,” J. Fluid Mech.
, 370
, pp. 73
–99
.19.
Sotiropoulos
, F.
, Ventikos
, Y.
, and Lackey
, T. C.
, 2001
, “Chaotic Advection in Three-Dimensional Stationary Vortex-Breakdown Bubbles
,” J. Fluid Mech.
, 444
, pp. 257
–297
.20.
Serre
, E.
, and Bontoux
, P.
, 2001
, “Three-Dimensional Swirling Flow With a Precessing Vortex Breakdown in a Rotor-Stator Cylinder
,” Phys. Fluids
, 13
, pp. 3500
–3503
.21.
Serre
, E.
, and Bontoux
, P.
, 2002
, “Vortex Breakdown in a Three-Dimensional Swirling Flow
,” J. Fluid Mech.
, 459
, pp. 347
–370
.22.
Kawamura, T., and Kuwahara, K., 1984, “Computation of High Reynolds Number Flow Around a Circular Cylinder With Surface Roughness,” AIAA Paper, 840340.
23.
Gelfgat
, A. Yu.
, Bar-yoseph
, P. Z.
, and Solan
, A.
, 1996
, “Stability of Confined Swirling Flow With and Without Vortex Breakdown
,” J. Fluid Mech.
, 311
, pp. 1
–36
.Copyright © 2005
by ASME
You do not currently have access to this content.