Numerical studies are reported on the vortex breakdown in a differentially-rotating cylindrical container in which the top endwall rotates at a high angular velocity Ωt and the cylinder and bottom endwall rotate at a low angular velocity Ωsb. Critical boundaries and the location and size of the vortex breakdown bubble are quite different from the case when the top endwall rotates and the cylinder and the bottom endwall are stationary. As |Ωsb/Ωt| is increased, the breakdown bubble moves toward downstream for Ωsb/Ωt<0, whereas the bubble moves toward upstream for Ωsb/Ωt>0. The Brown and Lopez criterion is extended to a differentially-rotating container.

1.
Vogel, H. U., 1968, “Experimetelle Ergebnisse ueber die Laminare Stroemung in einen zylindrischen Gehaeuse mit darin rotierender Scheibe,” Max-Planck-Institut fuer Stroemungsforschung, Goertingen, Bericht 6.
2.
Escudier
,
M. P.
,
1984
, “
Observations of the Flow Produced in a Cylindrical Container by a Rotating Endwall
,”
Exp. Fluids
,
2
, pp.
189
196
.
3.
Lugt
,
H. J.
, and
Hasussling
,
H. J.
,
1982
, “
Axisymmetric Vortex Breakdown in Rotating Fluid Within a Container
,”
Trans. ASME, J. Appl. Mech.
,
49
, pp.
921
923
.
4.
Lugt
,
H. J.
, and
Abboud
,
M.
,
1987
, “
Axisymmetric Vortex Breakdown With and Without Temperature Effects in a Container With a Rotating Lid
,”
J. Fluid Mech.
,
179
, pp.
179
200
.
5.
Duabe
,
O.
, and
Sorensen
,
J. N.
,
1989
, “
Simulation Numerique de l’Ecoulement Periodique Axisymetrique Dans une Cavite Cylindrique
,”
Acad. Sci., Paris, C. R.
,
308
, pp.
463
469
.
6.
Lopez
,
J. M.
,
1990
, “
Axisymmetric Vortex Breakdown. Part 1. Confined Swirling Flow
,”
J. Fluid Mech.
,
221
, pp.
533
552
.
7.
Brown
,
G. L.
, and
Lopez
,
J. M.
,
1990
, “
Axisymmetric Vortex Breakdown. Part 2. Physical Mechanisms
,”
J. Fluid Mech.
,
221
, pp.
553
576
.
8.
Tsitverbilt
,
N.
,
1993
, “
Vortex Breakdown in a Cylindrical Container in the Light Continuaton of a Steady Solution
,”
Fluid Dyn. Res.
,
11
, pp.
19
35
.
9.
Sotiropoulos
,
F.
, and
Ventikos
,
Y.
,
2001
, “
The Three-Dimensional Structure of Confined Swirling Flows With Breakdown
,”
J. Fluid Mech.
,
426
, pp.
155
175
.
10.
Fujimura
,
K.
,
Yoshizawa
,
H.
,
Iwatsu
,
R.
,
Koyama
,
H. S.
, and
Hyun
,
J. M.
,
2001
, “
Velocity Measurements of Vortex Breakdown in an Enclosed Cylinder
,”
ASME J. Fluids Eng.
,
123
, pp.
604
611
.
11.
Roesner, K. G., 1989, “Recirculation Zones in a Cylinder With Rotating Lid,” Topological Fluid Mechanics, Proceedings of the IUTAM Symposium, edited by A. Tsinober and H. K. Moffat, Cambridge University Press, CA, pp. 699–708.
12.
Bar-Yoseph
,
P. Z.
,
Solan
,
A.
, and
Roesner
,
K. G.
,
1990
, “
Recirculation Zones in a Cylinder With Rotating Lid
,”
Z. Angew. Math. Mech.
,
70
, pp.
442
444
.
13.
Valentine
,
D. T.
, and
Jahnke
,
C. C.
,
1994
, “
Flows Induced in a Cylinder With Both Endwalls Rotating
,”
Phys. Fluids
,
6
, pp.
2702
2710
.
14.
Gelfgat
,
A. Yu.
,
Bar-Yoseph
,
P. Z.
, and
Solan
,
A.
,
1996
, “
Steady States and Oscillatory Instability of Swirling Flow in a Cylinder With Rotating Top and Bottom
,”
Phys. Fluids
,
8
, pp.
2614
2625
.
15.
Watson
,
J. P.
, and
Neitzel
,
G. P.
,
1996
, “
Numerical Evaluation of a Vortex-Breakdown Criterion
,”
Phys. Fluids
,
8
, pp.
3063
3071
.
16.
Fujimura
,
K.
,
Koyama
,
H. S.
, and
Hyun
,
J. M.
,
2004
, “
An Experimental Study on Vortex Breakdown in a Differentially Rotating Cylindrical Container
,”
Exp. Fluids
,
36
, pp.
339
407
.
17.
Jahnke
,
C. C.
, and
Valentine
,
D. T.
,
1998
, “
Recirculation Zones in a Cylindrical Container
,”
ASME Trans. J. Fluids Eng.
,
120
, pp.
680
684
.
18.
Spohn
,
A.
,
Mory
,
M.
, and
Hopfinger
,
E. J.
,
1998
, “
Experiments on Vortex Breakdown in a Confined Flow Generated by a Rotating Disk
,”
J. Fluid Mech.
,
370
, pp.
73
99
.
19.
Sotiropoulos
,
F.
,
Ventikos
,
Y.
, and
Lackey
,
T. C.
,
2001
, “
Chaotic Advection in Three-Dimensional Stationary Vortex-Breakdown Bubbles
,”
J. Fluid Mech.
,
444
, pp.
257
297
.
20.
Serre
,
E.
, and
Bontoux
,
P.
,
2001
, “
Three-Dimensional Swirling Flow With a Precessing Vortex Breakdown in a Rotor-Stator Cylinder
,”
Phys. Fluids
,
13
, pp.
3500
3503
.
21.
Serre
,
E.
, and
Bontoux
,
P.
,
2002
, “
Vortex Breakdown in a Three-Dimensional Swirling Flow
,”
J. Fluid Mech.
,
459
, pp.
347
370
.
22.
Kawamura, T., and Kuwahara, K., 1984, “Computation of High Reynolds Number Flow Around a Circular Cylinder With Surface Roughness,” AIAA Paper, 840340.
23.
Gelfgat
,
A. Yu.
,
Bar-yoseph
,
P. Z.
, and
Solan
,
A.
,
1996
, “
Stability of Confined Swirling Flow With and Without Vortex Breakdown
,”
J. Fluid Mech.
,
311
, pp.
1
36
.
You do not currently have access to this content.