This paper presents results of investigations of unsteady incompressible flow past three-dimensional cavities, where there is a complex interaction between the external flow and the recirculating flow inside the cavity. A computational fluid dynamics approach is used in the study. The simulation is based on the solution of the unsteady Navier-Stokes equations for three-dimensional incompressible flow by using finite difference schemes. The cavity is assumed to be rectangular in geometry, and the flow is assumed to be laminar. Typical results of computation are presented, showing the effects of the Reynolds number, cavity geometry, and inflow condition on the cavity flow fields. The results show that high Reynolds numbers, with deep cavity and shallow cavity flows can become unsteady with Kelvin-Helmholtz instability oscillations and exhibiting a three-dimensional nature, with Taylor-Go¨rtler longitudinal vortices on the floor and longitudinal vortex structures on the shear layer. At moderate Reynolds numbers the shallow cavity flow is more stable than deep cavity flows. For a given Reynolds number the flow structure is affected by the thickness of the inflow boundary layer with a significant interaction between the external flow and the recirculating flow inside the cavity.

1.
Ball
,
J. W.
,
1959
, “
Hydraulic Characteristics of Gates Slots
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
85
(
HY10
), pp.
81
114
.
2.
Miles
,
J. W.
, and
Lee
,
Y. K.
,
1959
, “
Helmholtz Resonance of Harbors
,”
J. Fluid Mech.
,
67
(
3
), pp.
445
467
.
3.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1978
, “
Review-Self-Sustaining Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
, pp.
152
165
.
4.
Suhs, N. E., 1987, “Computation of Three-Dimensional Cavity Flow at Subsonic and Supersoic Mach Numbers,” NASA TP-2683.
5.
Baysal, O., Srinivasan, S., and Stallings, R. L., Jr., 1988, “Unsteady Viscous Calculations of Supersonic Flows Past Deep and Shallow Three-Dimensional Cavities,” AIAA Paper 88-0101.
6.
Baysal
,
O.
, and
Stallings
, Jr.,
R. L.
,
1988
, “
Computational and Experimental Investigation of Cavity Flowfields
,”
AIAA J.
,
26
(
1
), pp.
6
7
.
7.
Chokani, N., and Kim, I., 1991, “Suppression of Pressure Oscillations in an Open Cavity by Passive Pneumatic Control,” AIAA Paper 91-1729.
8.
Morgenstern
, Jr.,
A.
, and
Chokani
,
N.
,
1994
, “
Hypersonic Flow Past Cavities
,”
AIAA J.
,
32
(
12
), pp.
2387
2393
.
9.
Rizzetta
,
D. P.
,
1988
, “
Numerical Simulation of Supersonic Flow Over a Three-Dimensional Cavity
,”
AIAA J.
,
26
(
7
), pp.
799
807
.
10.
Sinha
,
S. N.
,
Gupta
,
A. K.
, and
Oberai
,
M. M.
,
1982
, “
Laminar Separating Flow over Backsteps and Cavities Part II: Cavities
,”
AIAA J.
,
20
(
3
), pp.
370
375
.
11.
Srinivasan
,
S.
,
Baysal
,
O.
, and
Plentovich
,
E. B.
,
1988
, “
Navier-Stokes Calculations of Transonic Flows Past Open and Transitional Cavities
,”
ASME J. Fluids Eng.
,
66
, pp.
169
179
.
12.
Mehta, U. B., and Lavan, Z., 1969, “Flow in a Two-Dimensional Channel with a Rectangular Cavity,” NASA CR 1245.
13.
O’Brien
,
V.
,
1972
, “
Closed Streamlines Associated with Channel Flow over a Cavity
,”
Phys. Fluids
,
15
(
12
), pp.
2089
2097
.
14.
Pereira
,
J. C. F.
, and
Sousa
,
J. M. M.
,
1995
, “
Experimental and Numerical Investigation of Flow Oscillations in a Rectangular Cavity
,”
ASME J. Fluids Eng.
,
117
, pp.
68
74
.
15.
Wood, W. A., 1996, “Multigrid Approach to Incompressible Viscoue Cavity Flows,” NASA TM-110262.
16.
Chiang
,
T. P.
,
Hwang
,
R. R.
, and
Sheu
,
W. H.
,
1997
, “
On End-Wall Corner Vortices in a Lid-Driven Cavity
,”
ASME J. Fluids Eng.
,
119
, pp.
201
204
.
17.
Cortes
,
A. B.
, and
Miller
,
J. D.
,
1994
, “
Numerical Experiments with the Lid-Driven Cavity Flow Problem
,”
Comput. Fluids
,
23
(
8
), pp.
1005
1027
.
18.
Iwatsu
,
R.
,
Hyun
,
J. M.
, and
Kuwahara
,
K.
,
1993
, “
Numerical Simulations of Three-Dimensional Flows in a Cubic Cavity with an Oscillating Lid
,”
ASME J. Fluids Eng.
,
115
, pp.
680
686
.
19.
Koseff
,
J. R.
, and
Street
,
R. L.
,
1984
, “
On End Wall Effects in a Lid-Driven Cavity Flow
,”
ASME J. Fluids Eng.
,
106
, pp.
385
389
.
20.
Burggraf
,
O. R.
,
1966
, “
Numerical Prediction of Unsteady Flowfield in an Open Cavity
,”
J. Fluid Mech.
,
24
, pp.
113
151
.
21.
Weiss
,
R. F.
, and
Florsheim
,
B. H.
,
1965
, “
Flow in a Cavity at Low Reynolds Number
,”
Phys. Fluids
,
8
(
9
),
1631
1635
.
22.
Pan
,
F.
, and
Acrivos
,
A.
,
1967
, “
Steady Flows in Rectangular Cavities
,”
J. Fluid Mech.
,
28
(
4
), pp.
643
655
.
23.
Nallasamy
,
M.
, and
Prasad
,
K. K.
,
1977
, “
On Cavity Flow at High Reynolds Numbers
,”
J. Fluid Mech.
,
79
(
2
), pp.
391
414
..
24.
Gustafson
,
K.
, and
Halasi
,
K.
,
1986
, “
Vortex Dynamics of Cavity Flows
,”
J. Comput. Phys.
,
64, pp
279
319
.
25.
Aidun
,
C. K.
,
Triantafillopoulos
,
N. G.
, and
Benson
,
J. D.
,
1991
, “
Global Stability of a Lid-Driven Cavity with Throughflow: Flow Visualization Studie
,”
Phys. Fluids A
,
3
(
HY10
), pp.
2081
2091
.
26.
Maull
,
D. J.
, and
East
,
L. F.
,
1963
, “
Three-Dimensional Flow in Cavities
,”
J. Fluid Mech.
,
16
(
4
), pp.
620
632
.
27.
East
,
L. F.
,
1966
, “
Aerodynamically Induced Resonance in Rectangular Cavities
,”
J. Sound Vib.
,
3
(
3
), pp.
277
287
.
28.
Koseff
,
J. R.
, and
Street
,
R. L.
,
1984
, “
The Lid-Driven Cavity Flow: A Synthesis of Qualitative and Quantitative Observations
,”
ASME J. Fluids Eng.
,
106, pp
390
398
.
29.
Koseff
,
J. R.
, and
Street
,
R. L.
,
1984
, “
Visualization Studies of a Shear Driven Three-Dimensional Recirculating Flow
,”
ASME J. Fluids Eng.
,
106
, pp.
21
29
.
30.
Freitas
,
C. J.
,
Street
,
R. L.
,
Findikakis
,
A. N.
, and
Kosseff
,
J. R.
,
1985
, “
Numerical simulation of Three-Dimensional Flow in a Cavity
,”
Int. J. Numer. Methods Fluids
,
5
, pp.
561
575
.
31.
de Vahl Davis
,
G.
, and
Mallison
,
G. D.
,
1976
, “
An Evaluation of Upwind and Central Difference Approximations by a Study of Recirculating flow
,”
Comput. Fluids
,
4
, pp.
29
43
.
32.
Freitas
,
C. J.
, and
Street
,
R. L.
,
1988
, “
Non-Linear Transport Phenomena in a Complex Recirculating Flow: A Numerical Investigation
,”
Int. J. Numer. Methods Fluids
,
8
, pp.
769
802
.
33.
Komerath, N. M., Ahuja, K. K., and Chambers, F. W., 1987, “Prediction and Measurement of Flows over Cavities-A Survey,” AIAA Paper 87-0166.
34.
Baldmin, B. S., and Lomax, H., 1978, “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA Paper 78-257.
35.
Bardina, J., Ferziger, J. H., and Reynolds, W. C., 1984, “Improved Turbulence Models Based on LES of Homogeneous Incompressible Turbulent Flow,” Report TF-19, Dept. of Mechanical Engineering, Stanford.
36.
Hankey
,
W. L.
, and
Shang
,
J. S.
,
1980
, “
Analysis of Pressure Oscillation in an Open Cavity
,”
AIAA J.
,
18
(
8
), pp.
892
898
.
37.
Rogers
,
S. E.
, and
Kwak
,
D.
,
1990
, “
Upwind Difference Scheme for the Time-Accurate Incompressible Navier-Stokes Equations
,”
AIAA J.
,
28, pp.
253
262
.
38.
Forristal, R., 2000, “Unsteady Flow over Cavities,” Ph.D. Thesis, School of Aeronautical Engineering, The Queen’s University of Belfast, Belfast, UK.
39.
Neary
,
M. D.
, and
Stsphanoff
,
K. D.
,
1987
, “
Shear-Layer-Driven Transition in a Rectangular Cavity
,”
Phys. Fluids
,
30
(
10
), pp.
2936
2946
.
40.
Hardin
,
J. C.
, and
Pope
,
D. S.
,
1995
, “
Sound Generation by Flow over a Two-Dimensional Cavity
,”
AIAA J.
,
33
(
3
), pp.
407
412
.
41.
Yao, H., Cooper, R. K., and Raghannathan, S., 2000, “Computation of Incompressible Flow Over Three-Dimensional Cavities,” Advances in Fluid Mechanics III, (Proc. 3rd International Conference on Advances in Fluid Mechanics), Rohman, M. and Brebbin, C. A. eds., WIT Press, Southampton, UK, pp. 125–133.
42.
Yao, H., “Incompressible Flow Over a Three-Dimensional cavity,” Ph.D. Thesis, School of Aeronautical Engineering, The Queen’s University of Belfast, December 2002.
You do not currently have access to this content.