A pulsatile laminar flow of a viscous, incompressible fluid through a pipe with a sudden constriction (an orifice) was simulated by an immersed-boundary method. A fluid is forced to move by an imposed sinusoidally varying pressure difference, Δpt. For a pulsatile flow through a pipe orifice, an oscillating recirculation bubble develops behind the orifice. The induced flow rate, Qt, the recirculation bubble length, Lbt, as well as their phase shift ϕQ,ϕL with respect to the imposed pressure difference were computed for different constriction ratios and the Womersley Ws number.

1.
Swarztrauber
,
P. N.
,
1974
, “
A Direct Method for the Discrete Solutions of Separable Elliptic Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
11
,
1136
1150
.
2.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
,
252
271
.
3.
Balaras
,
E.
,
2004
, “
Modeling Complex Boundaries Using an External Force Field on Fixed Cartesian Grids in Large-Eddy Simulations
,”
Comput. Fluids
,
33
,
375
404
.
4.
Mohd-Yusof, J., “Combined Immersed Boundaries/B-Splines Method for Simulations of Flows in Complex Geometries,” CTR Ann. Res. Briefs, NASA Ames/Stanford University, 1997.
5.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
,
35
66
.
6.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
,
2001
, “
An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries
,”
J. Comput. Phys.
,
171
,
132
150
.
7.
Mills
,
R. D.
,
1968
, “
Numerical Solutions of Viscous Flow Through a Pipe Orifice at Low Reynolds Numbers
,”
J. Mech. Eng. Sci.
,
10
,
133
140
.
8.
White, F. M., Viscous Fluid Flow, McGraw-Hill, New York, 1991.
9.
Sexl
,
T.
,
1930
, “
U¨ber den von E. G. Richardson entdeckten annulareffekt
,”
Z. Phys.
,
61
,
349
349
.
10.
Yakhot
,
A.
, and
Grinberg
,
L.
,
2003
, “
Phase Shift Ellipses for Pulsating Flows
,”
Phys. Fluids
,
15
,
2081
2083
.
11.
Sisavath
,
S.
,
Jing
,
X.
,
Pain
,
C. C.
, and
Zimmerman
,
R. W.
,
2002
, “
Creeping Flow Through an Axisymmetric Sudden Contraction or Expansion
,”
J. Fluids Eng.
,
124
,
273
278
.
12.
Davis
,
A. M. J.
,
1991
, “
Creeping Flow Through an Annular Stenosis in a Pipe
,”
Q. Appl. Math.
,
49
,
507
520
.
13.
Wang
,
C. Y.
,
1996
, “
Stokes Flow Through a Tube With Annular Fins
,”
Eur. J. Mech. B/Fluids
,
15
,
781
789
.
You do not currently have access to this content.