A floating hemisphere under forced harmonic oscillation at very-low and very-high frequencies is considered. The problem is reduced to an elliptic one, that is, the Laplace operator in the exterior domain with Dirichlet and Neumann boundary conditions. Asymptotic values of the added mass are found with an analytic prolongation for the surge mode, and with a seminumerical computation with spherical harmonics for the heave one. The general procedure is based on the use of spherical harmonics and its derivation is based on a physical insight rather than a mathematical one. This case can be used to test the accuracy achieved by numerical codes based on other formulations as finite or boundary elements.
1.
Falnes
, J.
, and McIver
, P.
, 1985
, “Surface Wave Interactions With System of Oscillating Bodies and Pressure Distributions
,” Appl. Ocean. Res.
, 7
(4
), pp. 225
–234
.2.
Ohkusu, M., Advances in Marine Hydrodynamics, Computational Mechanics Publications, 1996.
3.
Huang
, Y.
, and Sclavounos
, P. D.
, 1998
, “Nonlinear Ship Motions
,” J. Ship Res.
, 42
(2
), pp. 120
–130
.4.
Hulme
, A.
, 1985
, “The Heave Added-Mass and Damping Coefficients of a Submerged Torus
,” J. Fluid Mech.
, 155
, pp. 511
–530
.5.
Lamb, H., Hydrodynamics, Dover, New York, 6th edition, 1993.
6.
Nicholls
, F. W.
, 1924
, “Vibration of Ships
,” Trans RINA
, 66
, pp. 141
–163
.7.
Lewis
, F. M.
, 1929
, “The Inertia of the Water Surrounding a Vibrating Ship
,” Trans. Soc. Nav. Arch
, 37
, pp. 1
–20
.8.
Lloyd, A. R. J. M., Seakeeping. Ship Behavior in Rough Weather, Ellis Horwood Limited, Chichester, 1989.
9.
Jennings
, A.
, 1985
, “Added Mass for Fluid-Structure Vibration Problems
,” Int. J. Numer. Methods Eng.
, 5
, pp. 817
–830
.10.
Hulme
, A.
, 1982
, “The Wave Forces Acting on a Floating Hemisphere Undergoing Forced Periodic Oscillations
,” J. Fluid Mech.
, 121
, pp. 443
–463
.11.
Ursell
, F.
, 1949
, “On the Heave Motion of a Circular Cylinder on the Surface of a Fluid
,” Q. J. Mech. Appl. Math.
, 2
, pp. 218
–231
.12.
Grim
, O.
, 1953
, “Berechnung der durch Schwingungen eines Schiffskoerpers Erzeugten Hydrodynamischen Kraefte
,” Jahbuch der Schiffsbautechnischen Gesellshaft
, 47
, pp. 277
–299
.13.
Tasai
, F.
, 1959
, “On the Damping Force and Added Mass of Ships Heaving and Pitching
,” J. Zosen Kiokai
, 105
, pp. 47
–56
.14.
Porter, W. R., “Pressure Distributions, Added Mass and Damping Coefficients for Cylinders Oscillating in a Free Surface,” Technical Report, Report 82-16, University of California, Institute of Engineering Research, Berkeley, 1960.
15.
Ogilvie
, T. F.
, 1963
, “First and Second Order Forces on a Cylinder Submerged Under a Free Surface
,” J. Fluid Mech.
, 16
, pp. 451
–472
.16.
Frank, W., “Oscillation of Cylinders in or Below the Free Surface of Deep Fluids,” Technical report, Naval Ship Research and Development Center, 1967.
17.
Havelock
, T. H.
, 1955
, “Waves Due to a Floating Hemi-Sphere Making Periodic Heaving Oscillations
,” Proc. R. Soc. London, Ser. A
, 231
, pp. 1
–7
.18.
Storti
, M.
, D’Elı´a
, J.
, Bonet
, R.
, Nigro
, N.
, and Idelsohn
, S.
, 2000
, “The DNL Absorbing Boundary Condition. Applications to Wave Problems
,” Comput. Methods Appl. Mech. Eng.
, 182
(3–4
), pp. 483
–498
.19.
Storti
, M.
, D’Elı´a
, J.
, and Idelsohn
, S.
, 1998
, “Algebraic Discrete Non-Local (DNL) Absorbing Boundary Condition for the Ship Wave Resistance Problem
,” J. Comput. Phys.
, 146
(2
), pp. 570
–602
.20.
Storti
, M.
, D’Elı´a
, J.
, and Idelsohn
, S.
, 1998
, “Computing Ship Wave Resistance From Wave Amplitude With the dnl Absorbing Boundary Condition
,” Commun. Numer. Methods Eng.
, 14
, pp. 997
–1012
.21.
D’Elı´a
, J.
, Storti
, M.
, and Idelsohn
, S.
, 2000
, “A Panel-Fourier Method for Free Surface Methods
,” J. Fluids Eng.
, 122
(2
), June, pp. 309
–317
.22.
D’Elı´a
, J.
, Storti
, M.
, and Idelsohn
, S.
, 2000
, “Iterative Solution of Panel Discretizations for Potential Flows the Modal/Multipolar Preconditioning
,” Int. J. Numer. Methods Fluids
, 32
(1
), pp. 1
–27
.23.
D’Elı´a
, J.
, Storti
, M.
, On˜ate
, E.
, and Idelsohn
, S.
, 2002
, “A Nonlinear Panel Method in the Time Domain for Seakeeping Flow Problems
,” Int. J. Comput. Fluid Dyn.
, 16
(4
), pp. 263
–275
.24.
Newman, J. N., Marine Hydrodynamics, The MIT Press, Cambridge, 1977.
25.
Ogilvie
, T. F.
, 1977
, “Singular-Perturbation Problems in Ship Hydrodynamics
,” Adv. Appl. Mech.
, 17
, pp. 91
–188
.26.
Stoker, J. J., Water Waves, Interscience Publishers, New York, 1957.
27.
Papanikolau
, A.
, 1985
, “On the Integral-Equation-Methods for the Evaluation of Motions and Loads of Arbitrary Bodies in Waves
,” Ingenieur-Archiv
, 55
, pp. 17
–29
.28.
D’Elı´a, J., and Storti, M., “A Kelvin-Source Mixed Computation in Ship Hydrodynamics,” Technical report, CIMEC, 2000.
29.
Landweber, L., Handbook of Fluid Dynamics, chapter Motion of Immersed and Floating Bodies. McGraw-Hill, New York, 1961.
30.
Sierevogel, L., “Time-Domain Calculations of Ship Motions,” PhD thesis, Technische Universiteit Delft, 1998.
31.
Prins, H. J., “Time-Domain Calculations of Drift Forces and Moments,” PhD thesis, Technische Universiteit Delft, 1995.
32.
Korsmeyer
, F. T.
, and Sclavounos
, P. D.
, 1989
, “The Large-Time Asymptotic Expansion of the Impulse Response Function for a Floating Body
,” Appl. Ocean. Res.
, 11
(2
), pp. 75
–88
.33.
Liapis, S. J., “Time-Domain Analysis of Ship Motions,” PhD thesis, University of Michigan, 1986.
34.
Ursell
, F.
, 1953
, “Short Surface Waves Due to an Oscillatin Inmersed Body
,” Proc. R. Soc. London, Ser. A
, 220
, pp. 90
–103
.35.
Davis
, A. M.
, 1971
, “Short Surface Waves Due to an Oscillating Half-Inmersed Sphere
,” Mathematika
, 18
, pp. 20
–39
.36.
Octave 2.1.33 General Public License, GNU project, i386-redhat-linux-gnu, 2001.
Copyright © 2004
by ASME
You do not currently have access to this content.