Measurements of local void fraction, rise velocity, and bubble diameter have been obtained for cocurrent, wall-heated, upward bubbly flows in a pressurized refrigerant. The instrumentation used are the gamma densitometer and the hot-film anemometer. Departure bubble size is correlated in terms of liquid subcooling and bulk bubble size in terms of void fraction. Flow visualization techniques have also been used to understand the two-phase flow structure and the behavior of the bubbly flow for different bubble shapes and sizes, and to obtain the bubble diameter and rise velocity. The lift model is provided explicitly in terms of Eotvos number which is changed by changing the system pressure. In general, Eotvos number plays a strong role in determining both bubbly lift and drag. Such insight coupled with quantitative local and averaged data on void fraction and bubble size at different pressures has aided in developing bubbly flow models applicable to heated two-phase flows at high pressure.

1.
Serizawa
,
A.
,
Kataoka
,
I.
, and
Michiyoshi
,
I.
,
1975
, “
Turbulence Structure of Air-Water Bubbly Flow
,”
Int. J. Multiphase Flow
,
2
, pp.
221
246
.
2.
Liu, T. J., and Bankoff, S. G., 1990, “Structure of Air-Water Bubbly Flow in a Vertical Pipe: I—Liquid Mean Velocity and Turbulence Measurements,” ASME, New York, Vol. FED-99/HTD-155, pp. 9–17.
3.
Liu
,
T. J.
,
1993
, “
Bubble Size and Entrance Length Effects on Void Development in a Vertical Channel
,”
Int. J. Multiphase Flow
,
19
(
1
), pp.
99
113
.
4.
Dix, G. E., 1971, “Vapor Void Fractions for Forced Convection with Subcooled Boiling at Low Flow Rates,” Ph.D. thesis, University of California, Berkeley, CA.
5.
Shiralkar
,
B. S.
, and
Lahey
,
R. T.
, Jr.
,
1972
, “
Diabatic Local Void Fraction Measurements in Freon-114 With a Hot-Wire Anemometer
,”
ANS Trans.
,
15
, p.
880
880
.
6.
Delhaye
,
J. M.
,
Semeria
,
R.
, and
Flamand
,
J. C.
,
1973
, “
Void Fraction, Vapor and Liquid Temperatures: Local Measurements in a Two-Phase Flow Using a Microthermocouple
,”
ASME J. Heat Transfer
,
95
, pp.
363
370
.
7.
Jones
,
O. C.
, and
Zuber
,
N.
,
1978
, “
Use of a Cylindrical Hot-Film Anemometer for Measurement of Two-Phase Void and Volume Flux Profiles in a Narrow Rectangular Channel. Heat Transfer: Research and Application
,”
AIChE Symp. Ser.
74
(
174
), pp.
191
204
.
8.
Hasan
,
A.
,
Roy
,
R. P.
, and
Kalra
,
S. P.
,
1991
, “
Some Measurements in Subcooled Flow Boiling of Refrigerant-113
,”
ASME J. Heat Transfer
,
113
, pp.
216
223
.
9.
Martin
,
R.
,
1972
, “
Measurement of the Local Void Fraction at High Pressure in a Heating Channel
,”
Nucl. Sci. Eng.
,
48
, pp.
125
138
.
10.
Kirouac
,
G. J.
,
Trabold
,
T. A.
,
Vassallo
,
P. F.
,
Moore
,
W. E.
, and
Kumar
,
R.
,
1999
, “
Instrumentation Development in Two-Phase Flow
,”
Exp. Therm. Sci.
,
20
, pp.
79
93
.
11.
Trabold
,
T. A.
,
Kumar
,
R.
, and
Vassallo
,
P. F.
,
1999
, “
Experimental Study of Dispersed Droplets in High-Pressure Annular Flow
,”
ASME J. Heat Transfer
,
121
, pp.
924
933
.
12.
Trabold
,
T. A.
, and
Kumar
,
R.
,
2000
, “
Vapor Core Turbulence in Annular Two-Phase Flow
,”
Exp. Fluids
,
28
, pp.
187
194
.
13.
Trabold
,
T. A.
, and
Kumar
,
R.
,
2000
, “
High Pressure Annular Two-Phase Flow in a Narrow Duct. Part I: Local Measurements in the Droplet Field
,”
ASME J. Fluids Eng.
,
122
, pp.
364
374
.
14.
de Carvalho, R., and Bergles, A. E., 1992, “The Pool Boiling and Critical Heat Flux of Vertically Oriented, Small Heaters Boiling on One Side,” Rensselaer Polytechnic Institute, Heat Transfer Laboratory Report HTL-12.
15.
Hosler
,
E. R.
,
1968
, “
Flow Patterns in High Pressure Two-Phase (Steam-Water) Flow With Heat Addition
,”
AIChE Symp. Ser.
,
64
, pp.
54
66
.
16.
Abdelmessih
,
A. H.
,
Hooper
,
F. C.
, and
Nangia
,
S.
,
1972
, “
Flow Effects on Bubble Growth and Collapse in Surface Boiling
,”
Int. J. Heat Mass Transf.
,
15
, pp.
115
125
.
17.
Mayinger, F., and Bucher, B., 1976, Proc. NATO Advanced Study Inst. on Two-Phase Flow and Heat Transfer, Instanbul, August.
18.
Gunther
,
F. C.
,
1951
, “
Photographic Study of Surface-Boiling Heat Transfer to Water With Forced Convection
,”
Trans. ASME
,
73
, pp.
115
123
.
19.
Levy
,
S.
,
1967
, “
Forced Convection Subcooled Boiling—Prediction of Vapor Volumetric Fractions
,”
Int. J. Heat Mass Transf.
,
10
, pp.
951
965
.
20.
Tolubinsky, V. I., and Kostanchuk, D. M., 1970, “Vapor Bubbles Growth Rate and Heat Transfer Intensity at Subcooled Water Boiling,” Fourth Int. Heat Trans. Conf., Paris, Versailles, 5, p. 132.8.
21.
Davis
and
Anderson
,
1966
,
AIChE J.
,
12
,
774
780
.
22.
Mendelson
,
H. D.
,
1967
, “
The Prediction of Bubble Terminal Velocities From Wave Theory
,”
AIChE J.
,
13
, pp.
250
253
.
23.
Fan, L. S., and Tsuchiya, K., 1990, Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions, Butterworth-Heinemann, Stoneham, MA.
24.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate flows
,”
AIChE J.
,
25
, pp.
843
855
.
25.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
, pp.
385
400
.
26.
Drew
,
D. A.
, and
Lahey
,
R. T.
,
1987
, “
The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
113
121
.
27.
Eichhorn
,
R.
, and
Small
,
S.
,
1964
, “
Experiments on the Lift and Drag of Spheres Suspended in a Poiseuille Flow
,”
J. Fluid Mech.
,
20
(
3
), p.
513
513
.
28.
Zun, I., 1987, “Transition From Wall Void Peaking to Core Void Peaking in Turbulent Bubbly Flow,” Proc. of ICHMT Conference on Transport Phenomena in Multiphase Flow, Dubrovnik, Yugoslavia.
29.
Tomiyama, A., 1998, “Struggle With Computational Bubble Dynamics,” Proc of the Int. Conf. on Multiphase Flow, ICMF’98, Lyon, June 8–12, pp. 1–18.
30.
Kariyasaki, A., 1987, “Behavior of a Single Gas Bubble in a Liquid Flow With a Linear Velocity Profile,” Proc. ASME-JSME Thermal Engineering Joint Conference, 5, ASME New York, pp. 261–267.
You do not currently have access to this content.