Using concepts from the subgrid-scale estimation modeling we develop a procedure for large-eddy simulations which employs Navier-Stokes equations truncated to an available mesh resolution. Operationally the procedure consists of numerically solving the truncated Navier-Stokes equation and a periodic processing of the small scale component of its solution. The modeling procedure is applied to simulate turbulent Rayleigh-Be´nard convection.

1.
Leonard, A., 1997, “
Large-Eddy Simulation of Chaotic Convection and Beyond,” AIAA Paper No. 97-0204.
2.
Geurts
,
B. J.
,
1997
, “
Inverse Modeling for Large-Eddy Simulation
,”
Phys. Fluids
,
9
, p.
3585
3585
.
3.
Stolz
,
S.
, and
Adams
,
N. A.
,
1999
, “
An Approximate Deconvolution Procedure for Large-Eddy Simulations
,”
Phys. Fluids
,
11
, p.
1699
1699
.
4.
Scotti
,
A.
, and
Meneveau
,
C.
,
1999
, “
A Fractal Model for Large Eddy Simulation of Turbulent Flow
,”
Physica D
,
127
, pp.
198
232
.
5.
Hylin
,
E. C.
, and
McDonough
,
J. M.
, 1999, “Chaotic Small-Scale Velocity Fields as Prospective Models for Unresolved Turbulence in an Addititve Decomposition of the Navier-Stokes Equations,” Int. J. Fluid Mech. Res., 26, p. 164.
6.
Kerr
,
R. M.
,
Domaradzki
,
J. A.
, and
Barbier
,
G.
,
1996
, “
Small-Scale Properties of Nonlinear Interactions and Subgrid-Scale Energy Transfer in Isotropic Turbulence
,”
Phys. Fluids
,
8
, p.
197
197
.
7.
Foias
,
C.
,
Manley
,
O. P.
, and
Temam
,
R.
,
1991
, “
Approximate Inertial Manifolds and Effective Eddy Viscosity in Turbulent Flows
,”
Phys. Fluids A
,
3
, p.
898
898
.
8.
Dubois, T., Jauberteau, F., and Temam, R., 1999, Dynamic Multilevel Methods and the Numerical Simulation of Turbulence, Cambridge University Press, Cambridge, UK.
9.
Zhou
,
Y.
,
Brasseur
,
J. G.
,
Juneja
,
A.
, and
Wyngaard
,
J. C.
,
2001
, “
A Resolvable Subfilter-Scale Model Specific to Large-Eddy Simulation of Near-Wall Turbulence
,”
Phys. Fluids
,
13
, p.
2602
2602
.
10.
Domaradzki
,
J. A.
, and
Saiki
,
E. M.
,
1997
, “
A Subgrid-Scale Model Based on the Estimation of Unresolved Scales of Turbulence
,”
Phys. Fluids
,
9
, p.
2148
2148
.
11.
Domaradzki
,
J. A.
, and
Loh
,
K. C.
,
1999
, “
The Subgrid-Scale Estimation Model in the Physical Space
,”
Phys. Fluids
,
11
, p.
2330
2330
.
12.
Loh
,
K. C.
, and
Domaradzki
,
J. A.
,
1999
, “
The Subgrid-Scale Estimation Model on Non-uniform Grids
,”
Phys. Fluids
,
11
, p.
3786
3786
.
13.
Domaradzki, J. A., Dubois, T., and Honein, A., 1998, “The Subgrid-Scale Estimation Model Applied to Large Eddy Simulations of Compressible Turbulence,” Proceedings of the 1998 Summer Program, Center for Turbulence Research, NASA Ames, Stanford, p. 351.
14.
Dubois
,
T.
,
Domaradzki
,
J. A.
, and
Honein
,
A.
,
2002
, “
The Subgrid-Scale Estimation Model Applied to Large Eddy Simulations of Compressible Turbulence
,”
Phys. Fluids
,
14
, p.
1781
1781
.
15.
Domaradzki
,
J. A.
, and
Horiuti
,
K.
,
2001
, “
Similarity Modeling on an Expanded Mesh Applied to Rotating Turbulence
,”
Phys. Fluids
,
13
, p.
3510
3510
.
16.
Kimmel
,
S. J.
, and
Domaradzki
,
J. A.
,
2000
, “
Large Eddy Simulations of Rayleigh-Be´nard Convection Using Subgrid Scale Estimation Model
,”
Phys. Fluids
,
12
, p.
169
169
.
17.
Domaradzki
,
J. A.
, and
Yee
,
P. P.
,
2000
, “
The Subgrid-Scale Estimation Model for High Reynolds Number Turbulence
,”
Phys. Fluids
,
12
, p.
193
193
.
18.
Yee, P. P., 2000, “A Velocity Estimation Model for Large Eddy Simulations of High Reynolds Number Homogeneous, Isotropic Turbulence,” Ph.D. thesis, University of Southern California.
19.
Loh, K.-C., 2000, “The Subgrid-Scale Estimation Procedure in the Physical Space Representation,” Ph.D. thesis, University of Southern California.
20.
Domaradzki
,
J. A.
,
Loh
,
K. C.
, and
Yee
,
P. P.
,
2002
, “
Large Eddy Simulations Using the Subgrid-Scale Estimation Model and Truncated Navier-Stokes Dynamics
,”
Theor. Comput. Fluid Dyn.
,
15
, pp.
421
450
.
21.
Boris
,
J. P.
,
Grinstein
,
F. F.
,
Oran
,
E. S.
, and
Kolbe
,
R. L.
,
1992
, “
New Insights Into Large Eddy Simulation
,”
Fluid Dyn. Res.
,
10
, pp.
199
228
.
22.
Karamanos
,
G.-S.
, and
Karniadakis
,
G. E.
,
2000
, “
A Spectral Vanishing Viscosity Method for Large-Eddy Simulations
,”
J. Comput. Phys.
,
163
, pp.
22
50
.
23.
Margolin
,
L. G.
, and
Rider
,
W. J.
,
2003
, “
A Rationale for Implicit Turbulence Modeling
,”
Int. J. Numer. Math. Fluids
,
39
, p.
821
821
.
24.
Adams
,
N. A.
,
2001
, “
The Use of LES Subgrid-Scale Models for Shock-Capturing
,”
Int. J. Numer. Math. Fluids
,
39
, p.
783
783
.
25.
Lesieur, M., Turbulence in Fluids, 2nd Ed., Kluwer Academic Publishers, Dordrecht.
26.
Chan, D. C., 1996, “Effects of Rotation on Turbulent Convection: Direct Numerical Simulation Using Parallel Computers,” Ph.D. thesis, University of Southern California.
27.
Deardorff
,
J. W.
, and
Willis
,
G. E.
,
1967
, “
Investigation of Turbulent Thermal Convection Between Horizontal Plates
,”
J. Fluid Mech.
,
28
, p.
675
675
.
28.
Christie
,
S.
, and
Domaradzki
,
J. A.
,
1993
, “
Numerical Evidence for Nonuniversality of the Soft/Hard Turbulence Classification for Thermal Convection
,”
Phys. Fluids
,
5
, p.
412
412
.
29.
Kerr
,
R.
,
1996
, “
Rayleigh Number Scaling in Numerical Convection
,”
J. Fluid Mech.
,
310
, p.
139
139
.
30.
Lund, T. S., and Kaltenbach, H.-J., 1995, “Experiments With Explicit Filtering for LES Using a Finite-Difference Method,” Annual Research Briefs, Center for Turbulence Research, Stanford University, pp. 91–105.
You do not currently have access to this content.