Abstract

In the literature, there is a lack of tools able to optimize contextually the design and operation of a multi-energy system in its entirety, encompassing both (i) the number, type, and size of the energy conversion and storage plants supplying the end users of the system with the required energy and (ii) the geometry and capacity of the distribution networks delivering that energy to the users. Moreover, rarely the retrofit design problem is considered, where “retrofit design” refers to the addition of new capacity to components initially available in existing systems. Here, a general method is proposed to simultaneously optimize the retrofit design and operation of a multi-energy system and the associated energy networks. The goal consists of finding the additional capacity to be added to the already available components—energy conversion and storage plants, energy networks—and the new components to be installed in order to comply with given reduction targets in carbon emissions while keeping the life cycle cost of the system at a minimum. A district composed of commercial and residential buildings operating in a microgrid is considered as a case study. Heat can be provided to the end users via a district heating network, while electricity can be either generated on-site or imported from the national power grid. Results of the retrofit design problem show a contextual reduction of 35% in CO2 emission and 20% in life cycle cost with respect to the original system configuration.

References

2.
Papadis
,
E.
, and
Tsatsaronis
,
G.
,
2020
, “
Challenges in the Decarbonization of the Energy Sector
,”
Energy
,
205
, p.
118025
.
3.
Kim
,
D.
,
Cho
,
H.
, and
Luck
,
R.
,
2019
, “
Potential Impacts of Net-Zero Energy Buildings With Distributed Photovoltaic Power Generation on the U.S. Electrical Grid
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062005
.
4.
Mancarella
,
P.
,
2014
, “
MES (Multi-Energy Systems): An Overview of Concepts and Evaluation Models
,”
Energy
,
65
, pp.
1
17
.
5.
Dal Cin
,
E.
,
Carraro
,
G.
,
Volpato
,
G.
,
Lazzaretto
,
A.
, and
Danieli
,
P.
,
2022
, “
A Multi-Criteria Approach to Optimize the Design-Operation of Energy Communities Considering Economic-Environmental Objectives and Demand Side Management
,”
Energy Convers. Manage.
,
263
, p.
115677
.
6.
Volpato
,
G.
,
Carraro
,
G.
,
Cont
,
M.
,
Danieli
,
P.
,
Rech
,
S.
, and
Lazzaretto
,
A.
,
2022
, “
General Guidelines for the Optimal Economic Aggregation of Prosumers in Energy Communities
,”
Energy
,
258
, p.
124800
.
7.
Frangopoulos
,
C. A.
,
2018
, “
Recent Developments and Trends in Optimization of Energy Systems
,”
Energy
,
164
, pp.
1011
1020
.
8.
Lund
,
H.
,
Østergaard
,
P. A.
,
Nielsen
,
T. B.
,
Werner
,
S.
,
Thorsen
,
J. E.
,
Gudmundsson
,
O.
,
Arabkoohsar
,
A.
, and
Mathiesen
,
B. V.
,
2021
, “
Perspectives on Fourth and Fifth Generation District Heating
,”
Energy
,
227
, p.
120520
.
9.
Zhou
,
J.
,
Li
,
S.
,
Meng
,
T.
,
Zhou
,
X.
,
Liang
,
G.
, and
Zhao
,
Y.
,
2023
, “
Optimal Operation of Integrated Energy Systems Based on Multi-Energy Coupling With Power-to-Gas Technology
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
051704
.
10.
Nazari-Heris
,
M.
,
Mohammadi-Ivatloo
,
B.
, and
Asadi
,
S.
,
2020
, “
Optimal Operation of Multi-Carrier Energy Networks With Gas, Power, Heating, and Water Energy Sources Considering Different Energy Storage Technologies
,”
J. Energy Storage
,
31
, p.
101574
.
11.
Pizzolato
,
A.
,
Sciacovelli
,
A.
, and
Verda
,
V.
,
2017
, “
Topology Optimization of Robust District Heating Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020905
.
12.
Röder
,
J.
,
Meyer
,
B.
,
Krien
,
U.
,
Zimmermann
,
J.
,
Stührmann
,
T.
, and
Zondervan
,
E.
,
2021
, “
Optimal Design of District Heating Networks With Distributed Thermal Energy Storages—Method and Case Study
,”
Int. J. Sustain. Energy Plan. Manag.
,
31
, pp.
5
22
.
13.
Zhang
,
J.
,
Cho
,
H.
, and
Mago
,
P. J.
,
2022
, “
Design and Optimization of Integrated Distributed Energy Systems for Off-Grid Buildings
,”
ASME J. Energy Resour. Technol.
,
144
(
7
), p.
070902
.
14.
El-Emam
,
R. S.
, and
Dincer
,
I.
,
2016
, “
Assessment and Evolutionary Based Multi-Objective Optimization of a Novel Renewable-Based Polygeneration Energy System
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012003
.
15.
Rech
,
S.
, and
Lazzaretto
,
A.
,
2018
, “
Smart Rules and Thermal, Electric and Hydro Storages for the Optimum Operation of a Renewable Energy System
,”
Energy
,
147
, pp.
742
756
.
16.
Alsagri
,
A. S.
,
2021
, “
Thermo-Economic Assessment and Multi-Objective Optimization of an Innovatively Designed District Cooling System in Saudi Arabia
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
070902
.
17.
Ghilardi
,
L. M. P.
,
Castelli
,
A. F.
,
Moretti
,
L.
,
Morini
,
M.
, and
Martelli
,
E.
,
2021
, “
Co-Optimization of Multi-Energy System Operation, District Heating/Cooling Network and Thermal Comfort Management for Buildings
,”
Appl. Energy
,
302
, p.
117480
.
18.
Wirtz
,
M.
,
2023
, “
nPro: A Web-Based Planning Tool for Designing District Energy Systems and Thermal Networks
,”
Energy
,
268
, p.
126575
.
19.
Mashayekh
,
S.
,
Stadler
,
M.
,
Cardoso
,
G.
, and
Heleno
,
M.
,
2017
, “
A Mixed Integer Linear Programming Approach for Optimal DER Portfolio, Sizing, and Placement in Multi-Energy Microgrids
,”
Appl. Energy
,
187
, pp.
154
168
.
20.
Mehleri
,
E. D.
,
Sarimveis
,
H.
,
Markatos
,
N. C.
, and
Papageorgiou
,
L. G.
,
2012
, “
A Mathematical Programming Approach for Optimal Design of Distributed Energy Systems at the Neighbourhood Level
,”
Energy
,
44
(
1
), pp.
96
104
.
21.
Voll
,
P.
,
Lampe
,
M.
,
Wrobel
,
G.
, and
Bardow
,
A.
,
2012
, “
Superstructure-Free Synthesis and Optimization of Distributed Industrial Energy Supply Systems
,”
Energy
,
45
(
1
), pp.
424
435
.
22.
Hoffmann
,
M.
,
Kotzur
,
L.
,
Stolten
,
D.
, and
Robinius
,
M.
,
2020
, “
A Review on Time Series Aggregation Methods for Energy System Models
,”
Energies
,
13
(
3
), p.
641
.
23.
DEA—Danish Energy Agency
. “Technology Data.” https://ens.dk/en/our-services/projections-and-models/technology-data
24.
Sterchele
,
P.
,
Brandes
,
J.
,
Heilig
,
J.
,
Wrede
,
D.
,
Kost
,
C.
,
Schlegl
,
T.
,
Bett
,
A.
, and
Henning
,
H. M.
et al, “Paths to a Climate-Neutral Energy System. The German Energy Transition in Its Social Context,” Fraunhofer ISE2020. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html
25.
DESTATIS—Statisches Bundesmat
,
2023
, “Data on Energy Price Trends—Long-Time Series to Dezember 2022,” https://www.destatis.de/EN/Themes/Economy/Prices/Publications/Downloads-Energy-Price-Trends/energy-price-trends-pdf-5619002.html
26.
Rech
,
S.
,
2019
, “
Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations
,”
Energies
,
12
(
7
), p.
1320
. https://www.mdpi.com/1996-1073/12/7/1320
27.
Kotzur
,
L.
,
Markewitz
,
P.
,
Robinius
,
M.
, and
Stolten
,
D.
,
2018
, “
Time Series Aggregation for Energy System Design: Modeling Seasonal Storage
,”
Appl. Energy
,
213
, pp.
123
135
.
You do not currently have access to this content.