Abstract

The main objective of this study is to carry out the thermodynamic analysis of a new power/refrigeration combined cycle which consists of an ejector refrigeration cycle (ERC) and a Kalina cycle. In ERC, nanorefrigerants are used as the working fluid. Used nanorefrigerants are homogenous mixtures of different base refrigerants (R134a, R152a, and R290) and nanoparticles (TiO2 and Al2O3) with 0–5 wt% nanoparticle concentration. The effects of variation in system operational parameters (nanoparticle mass fraction, evaporator pressure, condenser pressure) on energy efficiency and exergy efficiency of the combined cycle are reported. Additionally, net power production, refrigeration capacity, heat input to the combined cycle, and their exergy contents are given for the case of TiO2/R290 nanorefrigerant use in ERC. This study is the first ERC analysis in which the effect of R152a and R290 base refrigerants and TiO2 nanoparticle use on ERC performance is investigated. The results show that as the nanoparticle concentration and evaporator pressure increase and condenser pressure decreases, the energy and exergy efficiencies of the cycle increase. Under all the considered operational conditions of the combined cycle, the highest efficiency results are obtained for R290 and the lowest for R134a-based refrigerants.

References

1.
Zaltash
,
A.
,
Petrov
,
A. Y.
,
Rizy
,
D. T.
,
Labinov
,
S. D.
,
Vineyard
,
E. A.
, and
Linkous
,
R. L.
,
2006
, “
Laboratory R&D on Integrated Energy Systems (IES)
,”
Appl. Therm. Eng.
,
26
(
1
), pp.
28
35
.
2.
International Energy Agency
,
2008
, “Combined Heat and Power: Evaluating the Benefits of Greater Global Investment.” Paris, France.
3.
IEA
,
2018
,
Future of Cooling Report, The Future of Cooling, Opportunities for Energy-Efficient Air Conditioning
,
International Energy Agency
,
Paris, France
.
4.
Riffat
,
S. B.
,
Liben
,
J.
, and
Guohni
,
G.
,
2005
, “
Recent Development in Ejector Technology—A Review
,”
Int. J. Ambient Energy
,
26
(
1
), pp.
13
26
.
5.
Ersoy
,
H. K.
,
Yalcin
,
S.
,
Yapici
,
R.
, and
Ozgoren
,
M.
,
2007
, “
Performance of a Solar Ejector Cooling-System in the Southern Region of Turkey
,”
Appl. Energy
,
84
(
9
), pp.
971
983
.
6.
Dong
,
J.
,
Yu
,
M.
,
Wang
,
W.
,
Song
,
H.
,
Li
,
C.
, and
Pan
,
X.
,
2017
, “
Experimental Investigation on Low-Temperature Thermal Energy Driven Steam Ejector Refrigeration System for Cooling Application
,”
Appl. Therm. Eng.
,
123
, pp.
167
176
.
7.
Boumaraf
,
L.
, and
Lallemand
,
A.
,
2009
, “
Modeling of an Ejector Refrigerating System Operating in Dimensioning and Off-Dimensioning Conditions With the Working Fluids R142b and R600a
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
265
274
.
8.
Seckin
,
C.
,
2018
, “
Thermodynamic Analysis of a Combined Power/Refrigeration Cycle: Combination of Kalina Cycle and Ejector Refrigeration Cycle
,”
Energy Convers. Manage.
,
157
, pp.
631
643
.
9.
Seckin
,
C.
,
2017
, “
Parametric Analysis and Comparison of Ejector Expansion Refrigeration Cycles With Constant Area and Constant Pressure Ejectors
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042005
.
10.
Sarkar
,
J.
, “
Ejector Enhanced Vapor Compression Refrigeration and Heat Pump Systems—A Review
,”
Renew. Sust. Energy Rev.
,
16
(
9
), pp.
6647
6659
.
11.
Besagni
,
G.
,
Mereu
,
R.
, and
Inzoli
,
F.
,
2016
, “
Ejector Refrigeration: A Comprehensive Review
,”
Renew. Sust. Energy Rev.
,
53
, pp.
373
407
.
12.
Chen
,
J.
,
Jarall
,
S.
,
Havtun
,
H.
, and
Palm
,
B.
,
2015
, “
A Review on Versatile Ejector Applications in Refrigeration Systems
,”
Renew. Sust. Energy Rev.
,
49
, pp.
67
90
.
13.
Chen
,
J.
,
Havtun
,
H.
, and
Palm
,
B.
,
2014
, “
Parametric Analysis of Ejector Working Characteristics in the Refrigeration System
,”
Appl. Therm. Eng.
,
69
(
1–2
), pp.
130
142
.
14.
Chunnanond
,
K.
, and
Aphornratana
,
S.
,
2004
, “
Ejectors: Applications in Refrigeration Technology
,”
Renew. Sust. Energy Rev.
,
8
(
2
), pp.
129
155
.
15.
Molana
,
M.
, and
Wang
,
H.
,
2020
, “
A Critical Review on Numerical Study of Nanorefrigerant Heat Transfer Enhancement
,”
Powder Technol.
,
368
, pp.
18
31
.
16.
Nair
,
V.
,
Tailor
,
P. R.
, and
Parekh
,
A. D.
,
2018
, “
Nanorefrigerants: A Comprehensive Review on its Past, Present and Future
,”
Int. J. Refrig.
,
67
(
2016
), pp.
290
307
.
17.
Sanukrishna
,
S. S.
,
Murukan
,
M.
, and
Jose
,
P. M.
,
2018
, “
An Overview of Experimental Studies on Nanorefrigerants: Recent Research, Development and Applications
,”
Int. J. Refrig.
,
88
, pp.
552
577
.
18.
Pawale
,
K. T.
,
Dhumal
,
A. H.
, and
Kerkal
,
G. M.
,
2017
, “
Performance Analysis of VCRS With Nano-Refrigerant
,”
Int. Res. J. Eng. Technol.
,
4
(
4
), pp.
1031
1037
.
19.
Celen
,
A.
,
Çebi
,
A.
,
Aktas
,
M.
,
Mahian
,
O.
,
Dalkilic
,
A. S.
, and
Wongwises
,
S.
,
2014
, “
A Review of Nanorefrigerants: Flow Characteristics and Applications
,”
Int. J. Refrig.
,
44
, pp.
125
140
.
20.
Aktas
,
M.
,
Dalkilic
,
A. S.
,
Celen
,
A.
,
Cebi
,
A.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2014
, “
A Theoretical Comparative Study on Nanorefrigerant Performance in a Single-Stage Vapor-Compression Refrigeration Cycle
,”
Adv. Mech. Eng.
,
7
(
1
), pp.
1
12
.
21.
Gill
,
J.
,
Singh
,
J.
,
Ohunakin
,
O. S.
, and
Adelekan
,
D. S.
,
2018
, “
Energy Analysis of a Domestic Refrigerator System With ANN Using LPG/TiO2–Lubricant as Replacement for R134a
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
475
488
.
22.
Kumar
,
V. S.
,
Baskaran
,
A.
, and
Subaramanian
,
K. M.
,
2016
, “
A Performance Study of Vapour Compression Refrigeration System Using ZrO2 Nano Particle With R134a and R152a
,”
Int. J. Sci. Res.
,
6
, pp.
410
421
.
23.
Loaiza
,
J. C. V.
,
Pruzaesky
,
F. C.
, and
Parise
,
J. A. R.
,
2010
, “
A Numerical Study on the Application of Nanofluids in Refrigeration Systems
,”
Proceedings of the International Refrigeration and Air Conditioning Conference at Purdue
,
Purdue, IN
,
Oct. 8–10
.
24.
Sendil Kumar
,
D.
, and
Elansezhian
,
R.
,
2014
, “
ZnO Nanorefrigerant in R152a Refrigeration System for Energy Conservation and Green Environment
,”
Front. Mech. Eng.
,
9
(
1
), pp.
75
80
.
25.
Subramani
,
N.
, and
Prakash
,
M. J.
,
2011
, “
Experimental Studies on a Vapour Compression System Using Nanorefrigerants
,”
Int. J. Eng. Sci. Technol.
,
3
(
9
), pp.
95
102
.
26.
Sharif
,
M. Z.
,
Azmi
,
W. H.
,
Redhwan
,
A. A. M.
,
Mamat
,
R.
, and
Yusof
,
T. M.
,
2017
, “
Performance Analysis of SiO2/PAG Nanolubricant in Automotive Air Conditioning System
,”
Int. J. Refrig.
,
75
, pp.
204
216
.
27.
Ande
,
R.
,
Koppala
,
R. S.
, and
Hadi
,
M.
,
2018
, “
Experimental Investigation on VCR System Using Nano-Refrigerant for COP Enhancement
,”
Chem. Eng. Trans.
,
71
, pp.
967
972
.
28.
Kundan
,
L.
, and
Singh
,
K.
,
2021
, “
Improved Performance of a Nanorefrigerant-Based Vapor Compression Refrigeration System: A New Alternative
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
235
(
1
), pp.
106
123
.
29.
Sozen
,
A.
,
Ozbas
,
E.
,
Menlik
,
T.
,
Cakir
,
M. T.
,
Guru
,
M.
, and
Boran
,
K.
,
2014
, “
Improving the Thermal Performance of Diffusion Absorption Refrigeration System With Alumina Nanofluids: An Experimental Study
,”
Int. J. Refrig.
,
44
, pp.
73
80
.
30.
Babaei
,
S. M.
,
Razmi
,
A. R.
,
Soltani
,
M.
, and
Nathwani
,
J.
,
2020
, “
Quantifying the Effect of Nanoparticles Addition to a Hybrid Absorption/Recompression Refrigeration Cycle
,”
J. Clean. Prod.
,
260
, p.
121084
.
31.
Talpada
,
J. S.
, and
Ramana
,
P. V.
,
2020
, “
Experimental Analysis of H2O-LiBr Absorption Refrigeration System Using Al2O3 Nanoparticles
,”
Int. J. Air-Cond. Refrig.
,
28
(
2
), pp.
1
12
.
32.
Jiang
,
W.
,
Li
,
S.
,
Yang
,
L.
, and
Du
,
K.
,
2019
, “
Experimental Investigation on Performance of Ammonia Absorption Refrigeration System With TiO2 Nanofluid
,”
Int. J. Refrig.
,
98
, pp.
80
88
.
33.
Jin
,
Z.
,
Li
,
S.
,
Zhou
,
R.
,
Xu
,
M.
,
Jiang
,
W.
, and
Du
,
K.
,
2021
, “
Experimental Investigation on the Effect of TiO2 Nanoparticles on the Performance of NH3–H2O-LiBr Absorption Refrigeration System
,”
Int. J. Refrig.
,
131
, pp.
826
833
.
34.
Kosmadakis
,
G.
, and
Neofytou
,
P.
,
2019
, “
Investigating the Effect of Nanorefrigerants on a Heat Pump Performance and Cost-Effectiveness
,”
Therm. Sci. Eng. Prog.
,
13
, p.
100371
.
35.
Kosmadakis
,
G.
, and
Neofytou
,
P.
,
2020
, “
Investigating the Performance and Cost Effects of Nanorefrigerants in a Low-Temperature ORC Unit for Waste Heat Recovery
,”
Energy
,
204
, p.
117966
.
36.
Tashtoush
,
B. M.
,
Al-Nimr
,
M. A.
, and
Khasawneh Mohammad
,
A.
,
2017
, “
Investigation of the Use of Nano-Refrigerants to Enhance the Performance of an Ejector Refrigeration System
,”
Appl. Energy
,
206
, pp.
1446
1463
.
37.
Aktemur
,
C.
, and
Tekin Ozturk
,
I.
,
2022
, “
Thermodynamic Performance Enhancement of Booster Assisted Ejector Expansion Refrigeration Systems With R1270/CuO Nano-Refrigerant
,”
Energy Convers. Manage.
,
253
, pp.
1
20
.
38.
Khetib
,
Y.
,
Sait
,
H.
,
Habeebullah
,
B.
, and
Hussain
,
A.
,
2022
, “
Improving the Performance of a Lithium-Ion Battery Connected to a Solar System Using a Nano-Refrigerant in an Ejector Refrigeration Cycle
,”
J. Energy Storage
,
45
, pp.
1
22
.
39.
Kasaeian
,
A.
,
Hosseini
,
S. M.
,
Sheikhpour
,
M.
,
Mahian
,
O.
,
Yan
,
W. M.
, and
Wongwises
,
S.
,
2018
, “
Applications of Eco-Friendly Refrigerants and Nanorefrigerants: A Review
,”
Renew. Sust. Energy Rev.
,
96
, pp.
91
99
.
40.
Chunnanond
,
K.
, and
Aphornratana
,
S.
,
2004
, “
An Experimental Investigation of a Steam Ejector Refrigerator: The Analysis of the Pressure Profile Along the Ejector
,”
Appl. Therm. Eng.
,
24
(
2
), pp.
311
322
.
41.
Selvaraju
,
A.
, and
Mani
,
A.
,
2006
, “
Experimental Investigation on R134a Vapour Ejector Refrigeration System
,”
Int. J. Refrig.
,
29
(
7
), pp.
1160
1166
.
42.
Chaiwongsa
,
P.
, and
Wongwises
,
S.
,
2008
, “
Experimental Study on R-134a Refrigeration System Using a Two-Phase Ejector as an Expansion Device
,”
Appl. Therm. Eng.
,
28
(
5
), pp.
467
477
.
43.
Yapıcı
,
R.
,
2008
, “
Experimental Investigation of Performance of Vapor Ejector Refrigeration System Using Refrigerant R123
,”
Energy Convers. Manage.
,
49
(
5
), pp.
953
961
.
44.
Nehdi
,
E.
,
Kairouani
,
L.
, and
Elakhdar
,
M.
,
2008
, “
A Solar Ejector Air Conditioning System Using Environment Friendly Working Fluids
,”
Int. J. Energy Res.
,
32
(
13
), pp.
1194
1201
.
45.
Roman
,
R.
, and
Hernandez
,
J. I.
,
2011
, “
Performance of Ejector Cooling Systems Using Low Ecological Impact Refrigerants
,”
Int. J. Refrig.
,
34
(
7
), pp.
1707
1716
.
46.
Sun
,
D. W.
,
1999
, “
Comparative Study of the Performance of an Ejector Refrigeration Cycle, Operating With Various Refrigerants
,”
Energy Convers. Manage.
,
40
(
8
), pp.
873
884
.
47.
Cizungu
,
K.
,
Mani
,
A.
, and
Groll
,
M.
,
2001
, “
Performance Comparison of Vapour Jet Refrigeration System With Environment Friendly Working Fluid
,”
Appl. Therm. Eng.
,
21
(
5
), pp.
585
598
.
48.
Bombarda
,
P.
,
Invernizzi
,
C. M.
, and
Pietra
,
C.
,
2010
, “
Heat Recovery From Diesel Engines: A Thermodynamic Comparison Between Kalina and ORC Cycle
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
212
219
.
49.
Zare
,
V.
,
2016
, “
A Comparative Thermodynamic Analysis of Two Tri-Generation Systems Utilizing Low-Grade Geothermal Energy
,”
Energy Convers. Manag.
,
118
, pp.
264
274
.
50.
Campos Rodriguez
,
C. E.
,
Escobar Palacio
,
J. C.
,
Venturini
,
O. J.
,
Silva Lora
,
E. E.
,
Cobas
,
V. M.
,
Marques dos Santos
,
D.
,
Lofrano Dotto
,
F. R.
,
Gialluca
,
V.
,
2013
, “
Energetic and Economic Comparison of ORC and Kalina Cycle for Low Temperature Enhanced Geothermal System in Brazil
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
109
119
.
51.
Fu
,
W.
,
Zhu
,
J.
,
Li
,
T.
,
Zhang
,
W.
, and
Li
,
J.
,
2013
, “
Comparison of a Kalina Cycle Based Cascade Utilization System With an Existing Organic Rankine Cycle Based Geothermal Power System in an Oilfield
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
224
233
.
52.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M.
,
2015
, “
Exergoeconomic Analysis and Optimization of Basic, Dual-Pressure and Dual-Fluid ORCs and Kalina Geothermal Power Plants: A Comparative Study
,”
Renew. Energy
,
83
, pp.
527
542
.
53.
Zare
,
V.
, and
Mahmoudi
,
S. M. S.
,
2015
, “
A Thermodynamic Comparison Between Organic Rankine and Kalina Cycles for Waste Heat Recovery From the Gas Turbine- Modular Helium Reactor
,”
Energy
,
79
, pp.
398
406
.
54.
Li
,
S.
, and
Dai
,
Y.
,
2014
, “
Thermo-Economic Comparison of Kalina and CO2 Transcritical Power Cycle for Low Temperature Geothermal Sources in China
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
139
152
.
55.
Ibrahim
,
O. M.
, and
Klein
,
S. A.
,
1996
, “
Absorption Power Cycles
,”
Energy
,
21
(
1
), pp.
21
27
.
56.
Marston
,
C. H.
,
1990
, “
Parametric Analysis of the Kalina Cycle
,”
ASME J. Eng. Gas Turbines Power
,
112
(
1
), pp.
107
116
.
57.
Park
,
Y.
, and
Sonntag
,
R.
,
1990
, “
A Preliminary Study of the Kalina Power Cycle in Connection With a Combined Cycle System
,”
Int. J. Energy Res.
,
14
(
2
), pp.
153
162
.
58.
Zhang
,
X. X.
,
He
,
M. G.
, and
Zhang
,
Y.
,
2012
, “
A Review of Research on the Kalina Cycle
,”
Renew. Sust. Energy Rev.
,
16
(
7
), pp.
5309
5318
.
59.
Wang
,
E.
, and
Yu
,
Z.
,
2016
, “
A Numerical Analysis of a Composition-Adjustable Kalina Cycle Power Plant for Power Generation From Low-Temperature Geothermal Sources
,”
Appl. Energy
,
180
, pp.
834
848
.
60.
Cao
,
L.
,
Wang
,
J.
, and
Dai
,
Y.
,
2014
, “
Thermodynamic Analysis of a Biomass-Fired Kalina Cycle With Regenerative Heater
,”
Energy
,
77
, pp.
760
770
.
61.
Khankari
,
G.
, and
Karmakar
,
S.
,
2016
, “
Power Generation From Coal Mill Rejection Using Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052004
.
62.
Barkhordarian
,
O.
,
Behbahaninia
,
A.
, and
Bahrampoury
,
R.
,
2017
, “
A Novel Ammonia-Water Combined Power and Refrigeration Cycle With Two Different Cooling Temperature Levels
,”
Energy
,
120
, pp.
816
826
.
63.
Seckin
,
C.
,
2020
, “
Effect of Operational Parameters on a Novel Combined Cycle of Ejector Refrigeration Cycle and Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012001
.
64.
Yapıcı
,
R.
, and
Ersoy
,
H. K.
,
2005
, “
Performance Characteristics of the Ejector Refrigeration System Based on the Constant Area Ejector Flow Model
,”
Energy Convers. Manage.
,
46
(
18–19
), pp.
3117
3135
.
65.
Khalil
,
A.
,
Fatouh
,
M.
, and
Elgendy
,
E.
,
2011
, “
Ejector Design and Theoretical Study of R134a Ejector Refrigeration Cycle
,”
Int. J. Refrig.
,
34
(
7
), pp.
1684
1698
.
66.
Disawas
,
S.
, and
Wongwises
,
S.
,
2004
, “
Experimental Investigation on the Performance of the Refrigeration Cycle Using a Two-Phase Ejector as an Expansion Device
,”
Int. J. Refrig.
,
27
(
6
), pp.
587
594
.
67.
Wongwises
,
S.
, and
Disawas
,
S.
,
2005
, “
Performance of the Two-Phase Ejector Expansion Refrigeration Cycle
,”
Int. J. Heat Mass Transfer
,
48
(
19–20
), pp.
4282
4286
.
68.
Chaiwongsa
,
P.
, and
Wongwises
,
S.
,
2007
, “
Effect of Throat Diameters of the Ejector on the Performance of the Refrigeration Cycle Using a Two-Phase Ejector as an Expansion Device
,”
Int. J. Refrig.
,
30
(
4
), pp.
601
608
.
69.
Atmaca
,
A. U.
,
Erek
,
A.
, and
Ekren
,
O.
,
2019
, “
Impact of the Mixing Theories on the Performance of Ejector Expansion Refrigeration Cycles for Environmentally-Friendly Refrigerants
,”
Int. J. Refrig.
,
97
, pp.
211
225
.
70.
Selvaraju
,
A.
, and
Mani
,
A.
,
2004
, “
Analysis of an Ejector With Environment Friendly Refrigerants
,”
Appl. Therm. Eng.
,
24
(
5–6
), pp.
827
838
.
71.
Cao
,
L.
,
Wang
,
J. F.
,
Wang
,
H. Y.
,
Zhao
,
P.
, and
Dai
,
Y.
,
2017
, “
Thermodynamic Analysis of a Kalina Based Combined Cooling and Power Cycle Driven by Low-Grade Heat Source
,”
Appl. Therm. Eng.
,
111
, pp.
8
19
.
72.
Alexis
,
G. K.
, and
Karayiannis
,
E. K.
,
2005
, “
A Solar Ejector Cooling System Using Refrigerant R134a in the Athens Area
,”
Renew. Energy
,
30
(
9
), pp.
1457
1469
.
73.
Ouzzane
,
M.
, and
Aidoun
,
Z.
,
2003
, “
Model Development and Numerical Procedure for Detailed Ejector Analysis and Design
,”
Appl. Therm. Eng.
,
23
(
18
), pp.
2337
2351
.
74.
Selvaraju
,
A.
, and
Mani
,
A.
,
2004
, “
Analysis of a Vapour Ejector Refrigeration System With Environment Friendly Refrigerants
,”
Int. J. Therm. Sci.
,
43
(
9
), pp.
915
921
.
75.
Mahian
,
O.
,
Kolsi
,
L.
,
Amani
,
M.
,
Estelle
,
P.
,
Ahmadi
,
G.
,
Kleinstreuer
,
C.
,
Marshall
,
J. S.
,
Siavashi
,
M.
,
Taylor
,
R. A.
, and
Niazmand
,
H.
,
2019
, “
Recent Advances in Modeling and Simulation of Nanofluid Flows-Part I: Fundamental and Theory
,”
Phys. Rep.
,
790
, pp.
1
48
.
76.
Kabeel
,
A. E.
,
Abou El Maaty
,
T.
, and
El Samadony
,
Y.
,
2013
, “
The Effect of Using Nano-Particles on Corrugated Plate Heat Exchanger Performance
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
221
229
.
77.
Huang
,
B. J.
,
Chang
,
J. M.
,
Wang
,
C. P.
, and
Petrenko
,
V. A.
,
1999
, “
A 1-D Analysis of Ejector Performance
,”
Int. J. Refrig.
,
22
(
5
), pp.
354
364
.
78.
Lear
,
W.
,
Parker
,
G.
, and
Sherif
,
S.
,
2002
, “
Analysis of Two-Phase Ejectors With Fabri Choking
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
216
(
5
), pp.
607
621
.
79.
Carrillo
,
J. A. E.
,
de La Flor
,
F. J. S.
, and
Lissén
,
J. M. S.
,
2017
, “
Thermodynamic Comparison of Ejector Cooling Cycles. Ejector Characterisation by Means of Entrainment Ratio and Compression Efficiency
,”
Int. J. Refrig.
,
74
, pp.
369
382
.
80.
Shu
,
F. H.
,
1991
,
The Physics of Astrophysics, vol. 2: Gas Dynamics
,
University Science Books
,
Mill Valley
.
81.
Braccio
,
S.
,
Guillou
,
N.
,
Le Pierrès
,
N.
,
Tauveron
,
N.
, and
Trieu Phan
,
H.
,
2022
, “
Mass-Flow-Rate Maximization Thermodynamic Model and Simulation of Supersonic Real-gas Ejectors Used in Refrigeration Systems
,”
Therm. Sci. Eng. Prog.
,
37
, p.
101615
.
82.
Perez
,
B. P.
,
Gutierrez
,
M. A.
,
Carrillo
,
J. A. E.
, and
Lissen
,
J. M. S.
,
2022
, “
Performance of Solar-Driven Ejector Refrigeration System (SERS) as Pre-Cooling System for Air Handling Units in Warm Climates
,”
Energy
,
238
, pp.
1
17
.
83.
Szargut
,
J.
,
Morris
,
D. R.
, and
Steward
,
F. R.
,
1988
,
Exergy Analysis of Thermal, Chemical, and Metallurgical Processes
, 1st ed,
Hemisphere Publishing Corporation
,
New York
.
84.
Oztop
,
H. F.
, and
Abu-Nada
,
E.
,
2008
, “
Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled With Nanofluids
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1326
1336
.
You do not currently have access to this content.