Abstract

This paper deals with the experimental investigation of direct injection compression ignition (DICI) engine runs with multiple biodiesels–diesel blended and neat diesel fuels along with the energy-exergy analysis to evaluate quantitative and qualitative data for determining energy and exergy efficiencies, losses, and exergy destruction. Second-generation biodiesels are utilized to conduct experiments on engine with constant speed and full throttle condition at a compression ratio of 17.5:1. Energy analysis is based on experimental data, and exergy analysis is performed with the help of derived formula using chemical and molecular structures. Variation in the performance, combustion, and emission parameters for B0, B10, and B20 blends reveals that BTE, AFR, η(mech.), η(vol.), CP, and CO decrease with the increase in BSEC, EGT, MGT, RPR, NHR, CO2, HC, and NOx. Energy-exergy analysis shows that the combustion and exergetic efficiencies are maximum for the B20 blend (+87.73%) and (+52.04%) at 2.5 kW and 3.3 kW BPs. Exergy destructed is observed to be three-fifth of total available exergy. Half of the heat supplied is carried away by cooling water while one-third of heat is converted into brake power, and the remaining heat is lost in exhaust gases and unaccounted losses.

References

1.
Soltanian
,
S.
,
Aghbashlo
,
M.
,
Almasi
,
F.
,
Hosseinzadeh-Bandbafha
,
H.
,
Nizami
,
A.S.
,
Ok
,
Y.S.
,
Lam
,
S.S.
and
Tabatabaei
,
M.
,
2020
, “
A Critical Review of the Effects of Pretreatment Methods on the Exergetic Aspects of Lignocellulosic Biofuels
,”
Energy Convers. Manage.
,
212
, p.
112792
, .
2.
Bhatt
,
A. N.
, and
Shrivastava
,
N.
,
2021
, “
Application of Artificial Neural Network for Internal Combustion Engines: A State of the Art Review
,”
Arch. Comput. Methods Eng.
,
29
(
2
), pp.
1
23
.
3.
Huang
,
D.
,
Zhou
,
H.
, and
Lin
,
L.
,
2011
, “
Biodiesel: An Alternative to Conventional Fuel
,”
Energy Procedia
,
16
, pp.
1874
1885
.
4.
Sayyed
,
S.
,
Das
,
R. K.
, and
Kulkarni
,
K.
,
2021
, “
Performance Assessment of Multiple Biodiesel Blended Diesel Engine and NOx Modeling Using ANN
,”
Case Stud. Therm. Eng.
,
28
, p.
101509
.
5.
Chaudhary
,
V.
, and
Gakkhar
,
R.
,
2015
, “
Application of Exergy Analysis to Internal Combustion Engine : A Review
,”
J. Aeronaut. Automot. Eng.
,
2
(
2
), pp.
101
106
.
6.
Al-najem
,
N. M.
, and
Diab
,
J. M.
,
1992
, “
Energy-Exergy Analysis of a Diesel Engine
,”
Heat Recover. Syst. CHP
,
12
(
6
), pp.
525
529
.
7.
Canakci
,
M.
, and
Hosoz
,
M.
,
2006
, “
Energy and Exergy Analyses of a Diesel Engine Fuelled With Various Biodiesels
,”
Energy Sources, Part B Econ. Plan. Policy
,
1
(
4
), pp.
379
394
.
8.
Chaudhary
,
V.
, and
Gakkhar
,
R. P.
,
2021
, “
Exergy Analysis of Small DI Diesel Engine Fueled With Waste Cooking Oil Biodiesel
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
43
(
2
), pp.
201
215
.
9.
Yamin
,
J. A.
,
Sakhnini
,
N.
,
Sakhrieh
,
A.
, and
Hamdan
,
M. A.
,
2013
, “
Environmental and Performance Study of a 4-Stroke CI Engine Powered With Waste Oil Biodiesel
,”
Sustain. Cities Soc.
,
9
, pp.
32
38
.
10.
Iortyer
,
H. A.
, and
Bwonsi
,
L.
,
2017
, “
Energy and Exergy Analysis of a CI Engine Fuelled With Biodiesel Fuel From Palm Kernel Oil and Its Blends With Petroleum Diesel
,”
Int. J. Adv. Eng. Res. Sci.
,
4
(
7
), pp.
87
97
.
11.
López
,
I.
,
Quintana
,
C. E.
,
Ruiz
,
J. J.
,
Cruz-Peragón
,
F.
, and
Dorado
,
M. P.
,
2014
, “
Effect of the Use of Olive-Pomace Oil Biodiesel/Diesel Fuel Blends in a Compression Ignition Engine: Preliminary Exergy Analysis
,”
Energy Convers. Manag.
,
85
, pp.
227
233
.
12.
Baranitharan
,
P.
,
2020
, “
Exergy Analysis of a Diesel Engine Fuelled With Aegle Marmelos de-Oiled Seed Cake Pyrolysis Oil Opus
,”
Environ. Prog. Sustain. Energy
,
39
(
5
).
13.
Magno
,
A.
,
Mancaruso
,
E.
, and
Vaglieco
,
B. M.
,
May 2015
, “
Effects of a Biodiesel Blend on Energy Distribution and Exhaust Emissions of a Small CI Engine
,”
Energy Convers. Manag.
,
96
, pp.
72
80
.
14.
Panigrahi
,
N.
,
Mohanty
,
M. K.
,
Mishra
,
S. R.
, and
Mohanty
,
R. C.
,
2014
, “
Performance, Emission, Energy, and Exergy Analysis of a C.I. Engine Using Mahua Biodiesel Blends With Diesel
,”
Int. Sch. Res. Not.
,
2014
, pp.
1
13
.
15.
Panigrahi
,
N.
,
Mohanty
,
M. K.
,
Mohanty
,
R. C.
, and
Mishra
,
S. R.
,
2016
, “
Performance of a C.I. Engine With Energy and Exergy Analysis Fuelled With Neem Oil Methyl Ester
,”
Int. J. Renew. Energy Technol.
,
7
(
3
), p.
264
.
16.
Panigrahi
,
N.
,
Mohanty
,
M. K.
,
Mishra
,
S. R.
, and
Mohanty
,
R. C.
,
2018
, “
Energy and Exergy Analysis of a Diesel Engine Fuelled With Diesel and Simarouba Biodiesel Blends
,”
J. Inst. Eng. Ser. C
,
99
(
1
), pp.
9
17
.
17.
Çakmak
,
A.
, and
Bilgin
,
A.
,
2017
, “
Exergy and Energy Analysis With Economic Aspects of a Diesel Engine Running on Biodiesel-Diesel Fuel Blends
,”
Int. J. Exergy
,
24
(
2–4
), pp.
151
172
.
18.
Nazzal
,
I. T.
, and
AlDoury
,
R. R. J.
,
2019
, “
Exergy and Energy Analysis of Diesel Engine Fuelled With Diesel and Diesel—Corn Oil Blends
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
63
(
1
), pp.
92
106
.
19.
Irfan
,
M. M.
,
Navin Kumar
,
J.
,
Jayaprabakar
,
J.
, and
Sriram
,
V.
,
2018
, “
Energy and Exergy Analysis of a CI Engine Using Tyre Pyrolysis Oil Blends With Diesel
,”
Int. J. Ambient Energy
,
39
(
6
), pp.
632
636
.
20.
Hosseinzadeh-Bandbafha
,
H.
,
Tabatabaei
,
M.
,
Aghbashlo
,
M.
,
Khanali
,
M.
, and
Demirbas
,
A.
,
2018
, “
A Comprehensive Review on the Environmental Impacts of Diesel/Biodiesel Additives
,”
Energy Convers. Manage.
,
174
, pp.
579
614
.
21.
Baskaran
,
S.
, and
Venkadesh
,
S.
,
2015
, “
Exergy Analysis in IC Engine Using Diesel Blends
,”
Int. J. Appl. Eng. Res.
,
10
(
7
).
22.
Nabi
,
M. N.
,
Rasul
,
M. G.
,
Anwar
,
M.
, and
Mullins
,
B. J.
,
2019
, “
Energy, Exergy, Performance, Emission and Combustion Characteristics of Diesel Engine Using New Series of Non-edible Biodiesels
,”
Renew. Energy
,
140
, pp.
647
657
.
23.
Thanh
,
N. C.
,
El Askary
,
A.
,
Elfasakhany
,
A.
, and
Nithya
,
S.
,
2021
, “
Exergy and Energy Analyses of the Spirulina Microalgae Blends in a Direct Injection Engine at Variable Engine Loads
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p. 120908.
24.
Meisami
,
F.
, and
Ajam
,
H.
,
2015
, “
Energy, Exergy and Economic Analysis of a Diesel Engine Fueled With Castor Oil Biodiesel
,”
Int. J. Engine Res.
,
16
(
5
), pp.
691
702
.
25.
Şanli
,
B. G.
, and
Uludamar
,
E.
,
2020
, “
Energy and Exergy Analysis of a Diesel Engine Fuelled With Diesel and Biodiesel Fuels at Various Engine Speeds
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
42
(
11
), pp.
1299
1313
.
26.
Özdalyan
,
B.
,
Uysal
,
C.
, and
Kurt
,
H.
,
2019
, “
Exergy Analysis of a Spark Ignition Engine for Different Crankshaft Speeds
,”
Pamukkale Univ. J. Eng. Sci.
,
25
(
1
), pp.
13
19
.
27.
Özkan
,
M.
,
2015
, “
A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed With Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure
,”
Entropy
,
17
(
1
), pp.
244
263
.
28.
Yesilyurt
,
M. K.
, and
Arslan
,
M.
,
2019
, “
Analysis of the Fuel Injection Pressure Effects on Energy and Exergy Efficiencies of a Diesel Engine Operating with Biodiesel
,”
Biofuels
,
10
(
5
), pp.
643
655
.
29.
Reifarth
,
S.
,
Tillmark
,
N.
, and
Angström
,
H. E.
,
2015
, “
Exergy and Energy Analysis of High-Pressure and Low-Pressure Exhaust Gas Recirculation System of a Diesel Engine
,”
Int. J. Exergy
,
17
(
3
), pp.
313
334
.
30.
Zhu
,
S.
,
Ma
,
Z.
,
Zhang
,
K.
, and
Deng
,
K.
,
2020
, “
Energy and Exergy Analysis of a Novel Steam Injected Turbocompounding System Applied on the Marine Two-Stroke Diesel Engine
,”
Energy Convers. Manage.
,
221
, p.
113207
.
31.
Mahabadipour
,
H.
,
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Subramanian
,
S. N.
,
2018
, “
Crank Angle-Resolved Exergy Analysis of Exhaust Flows in a Diesel Engine From the Perspective of Exhaust Waste Energy Recovery
,”
Appl. Energy
,
216
, pp.
31
44
.
32.
Gümüş
,
M.
, and
Atmaca
,
M.
,
2013
, “
Energy and Exergy Analyses Applied to a CI Engine Fueled With Diesel and Natural Gas
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
35
(
11
), pp.
1017
1027
.
33.
Zapata-Mina
,
J.
,
Restrepo
,
A.
,
Romero
,
C.
, and
Quintero
,
H.
,
2020
, “
Exergy Analysis of a Diesel Engine Converted to Spark Ignition Operating With Diesel, Ethanol, and Gasoline/Ethanol Blends
,”
Sustain. Energy Technol. Assessments
,
42
, p.
100803
.
34.
Reddy
,
A. V.
,
Kumar
,
T. S.
,
Kumar
,
D. T.
,
Dinesh
,
B.
, and
Santhosh
,
Y. V. S. S.
,
2014
, “
Energy and Exergy Analysis of IC Engines
,”
Int. J. Eng. Sci.
,
3
(
5
), pp.
7
26
.
35.
Khoobbakht
,
G.
,
Akram
,
A.
,
Karimi
,
M.
, and
Najafi
,
G.
,
2016
, “
Exergy and Energy Analysis of Combustion of Blended Levels of Biodiesel, Ethanol and Diesel Fuel in a di Diesel Engine
,”
Appl. Therm. Eng.
,
99
, pp.
720
729
.
36.
Das
,
A. K.
,
Hansdah
,
D.
,
Mohapatra
,
A. K.
, and
Panda
,
A. K.
,
2020
, “
Energy, Exergy and Emission Analysis on a DI Single Cylinder Diesel Engine Using Pyrolytic Waste Plastic Oil Diesel Blend
,”
J. Energy Inst.
,
93
(
4
), pp.
1624
1633
.
37.
Odibi
,
C.
,
Babaie
,
M.
,
Zare
,
A.
,
Nabi
,
M. N.
,
Bodisco
,
T. A.
, and
Brown
,
R. J.
,
2019
, “
Exergy Analysis of a Diesel Engine With Waste Cooking Biodiesel and Triacetin
,”
Energy Convers. Manage.
,
198
, p.
111912
.
38.
Gnanamani
,
S.
,
Gaikwad
,
U.
,
Subramaniam
,
L.
, and
Chandralingam
,
R.
,
2021
, “
Exergy Analysis in Diesel Engine With Binary Blends
,”
Therm. Sci.
,
26
(
1A
), pp.
353
362
.
39.
Karthickeyan
,
V.
,
Thiyagarajan
,
S.
,
Ashok
,
B.
,
Geo
,
V. E.
, and
Azad
,
A. K.
,
2020
, “
Experimental Investigation of Pomegranate Oil Methyl Ester in Ceramic Coated Engine at Different Operating Condition in Direct Injection Diesel Engine With Energy and Exergy Analysis
,”
Energy Convers. Manage.
,
205
, p.
112334
.
40.
Liu
,
R.
,
Huang
,
K.
,
Qiao
,
Y.
,
Wang
,
Z.
, and
Ji
,
H.
,
2022
, “
Combustion Performance Investigation of Aviation Kerosene (RP-3) on a Compression Ignition Diesel Engine Under Various Loads
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p. 032308.
41.
Zhang
,
Y.
,
Zhao
,
W.
,
Wu
,
H.
,
He
,
Z.
,
Qian
,
Y.
, and
Lu
,
X.
,
2022
, “
Performance, Combustion, and Emission Evaluation of Ethanol-Gasoline Blends Ignited by Diesel in Dual-Fuel Intelligent Charge Compression Ignition (ICCI) Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p. 082104.
42.
Gurbuz
,
H.
, and
Demirturk
,
S.
,
2020
, “
Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fueled Compression Ignition Engine
,”
ASME J. Energy Resour. Technol
,
142
(
12
), p. 122306.
43.
Anderson
,
A.
,
Al-Mohaimeed
,
A. M.
,
Elshikh
,
M. S.
,
Praveenkumar
,
T. R.
, and
Sekar
,
M.
,
2021
, “
Exergy and Energy Analysis of α-Fe2O3-Doped Al2O3 Nanocatalyst-Based Biodiesel Blends—Performance and Emission Characteristics
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p. 120902.
44.
Xu
,
G.
,
Jia
,
M.
,
Li
,
Y.
,
Xie
,
M.
, and
Su
,
W.
,
2017
, “
Multi-objective Optimization of the Combustion of a Heavy-Duty Diesel Engine With Low Temperature Combustion (LTC) Under a Wide Load Range: (II) Detailed Parametric, Energy, and Exergy Analysis
,”
Energy
,
139
, pp.
247
261
.
45.
Najafi
,
B.
,
Ardabili
,
S. F.
,
Mosavi
,
A.
,
Shamshirband
,
S.
, and
Rabczuk
,
T.
,
2018
, “
An Intelligent Artificial Neural Network-Response Surface Methodology Method for Accessing the Optimum Biodiesel and Diesel Fuel Blending Conditions in a Diesel Engine From the Viewpoint of Exergy and Energy Analysis
,”
Energies
,
11
(
4
), p.
860
.
46.
Paul
,
A.
,
Bhowmik
,
S.
,
Panua
,
R.
, and
Debroy
,
D.
,
2018
, “
Artificial Neural Network-Based Prediction of Performances-Exhaust Emissions of Diesohol Piloted Dual Fuel Diesel Engine Under Varying Compressed Natural Gas Flowrates
,”
ASME J. Energy Resour. Technol.
,
140
(
11
), p. 120902.
47.
Jafarmadar
,
S.
,
2014
, “
Exergy Analysis of Hydrogen/Diesel Combustion in a Dual Fuel Engine Using Three-Dimensional Model
,”
Int. J. Hydrogen Energy
,
39
(
17
), pp.
9505
9514
.
48.
Liu
,
Z.
, and
Liu
,
J.
,
2022
, “
Investigation of the Effect of Altitude on In-Cylinder Heat Transfer in Heavy-Duty Diesel Engines Based on an Empirical Model
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p. 112303.
49.
McLaughlin
,
E.
,
Choi
,
J.-K.
, and
Kissock
,
K.
,
2022
, “
Techno-Economic Impact Assessments of Energy Efficiency Improvements in the Industrial Combustion Systems
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p. 082109.
50.
Sahoo
,
B. B.
,
Dabi
,
M.
, and
Saha
,
U. K.
,
2021
, “
A Compendium of Methods for Determining the Exergy Balance Terms Applied to Reciprocating Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p. 120801.
51.
Ghahfarokhi
,
R. F.
,
Khalilarya
,
S.
, and
Ebrahimi
,
R.
,
2013
, “
Energy and Exergy Analyses of Homogeneous Charge Compression Ignition Engine
,”
Therm. Sci.
,
17
(
1
), pp.
107
117
.
52.
Krishnamoorthi
,
M.
, and
Malayalamurthi
,
R.
,
2017
, “
Experimental Investigation on Performance, Emission Behavior and Exergy Analysis of a Variable Compression Ratio Engine Fueled With Diesel—Aegle Marmelos Oil—Diethyl Ether Blends
,”
Energy
,
128
, pp.
312
328
.
53.
Heywood
,
J. B.
,
1988
, “Engine Types and Their Operation,”
Internal Combustion Engine Fundamentals
,
McGraw-Hill College
, pp.
1
37
.
54.
Srithar
,
K.
,
Arun Balasubramanian
,
K.
,
Pavendan
,
V.
, and
Ashok Kumar
,
B.
,
2017
, “
Experimental Investigations on Mixing of Two Biodiesels Blended With Diesel as Alternative Fuel for Diesel Engines
,”
J. King Saud Univ.—Eng. Sci.
,
29
(
1
), pp.
50
56
.
55.
Sayyed
,
S.
,
Das
,
R. K.
, and
Kulkarni
,
K.
,
2021
, “
Experimental Investigation for Evaluating the Performance and Emission Characteristics of DICI Engine Fuelled With Dual Biodiesel-Diesel Blends of Jatropha, Karanja, Mahua, and Neem
,”
Energy
,
238
, p.
121787
.
56.
Rao
,
V. P.
, and
Rao
,
B. V. A.
,
2008
, “
Influence of Physical and Chemical Properties of Two Biodiesel Fuels on Performance, Combustion and Exhaust Emission Characteristics in a DI-CI Engine
,”
Internal Combustion Engine Division Spring Technical Conference
, Vol. 48132, pp.
115
128
.
57.
Kuthalingam
,
A.
,
Asokan
,
G.
,
Vivar
,
M.
, and
Skryabin
,
I.
,
2013
, “
Performance and Emission Characteristics of Double Biodiesel Blends With Diesel
,” Available: https://openresearch-repository.anu.edu.au/bitstream/1885/72624/2/01_Kuthalingam_Performance_and_emission_2013.pdf. Accessed May 26, 2021.
58.
Sayyed
,
S.
,
Das
,
R. K.
, and
Kulkarni
,
K.
,
2019
, “
Experimental Investigation and Development of Correlations for Pongamia Pinnata Biodiesel
,”
MATEC Web of Conferences
, EDP Sciences, Vol.
272
, p.
01009
.
59.
Balasubramanian
,
K. A.
, and
Srithar
,
K.
,
2014
, “
Multiple Biodiesel Mixtures in Diesel Engine—Performance and Emission Analysis
,”
Energy Educ. Sci. Technol. Part A Energy Sci. Res.
,
32
(
1
), pp.
13
24
.
60.
Balasubramanian
,
K. A.
,
2012
, “
Dual Biodiesel Blends in Diesel Engine-Performance and Emission Analysis
,” Available: http://www.europeanjournalofscientificresearch.com. Accessed May 26, 2021.
You do not currently have access to this content.