Abstract

Nowadays, with the progress in technology, the demand for fossil fuels has increased. Therefore, improving the oil recovery from the current oil reservoir is among the crucial issues. Formation damage is a well-recognized subject that causes a reduction in the productivity or injectivity of an oil well. Reducing or controlling formation damage can be effective in improving oil recovery. There are various mechanisms that cause formation damage such as fine migration and clay swelling. In this study, the simultaneous effect of fine migration and swelling on the permeability of a carbonate rock was investigated. Kaolinite and smectite(bentonite) minerals were selected as the representative case for migration and swelling, respectively. Primarily, bottle tests were conducted to study the effect of different fluids on the swelling potential of the kaolinite and smectite. According to the structural feature of the kaolinite, it has the smallest cation exchange capacity (CEC) and consequently a low swelling tendency. Therefore, it showed negligible swelling in the presence of all fluids. According to the high cation concentration of the formation water (FW) and seawater (SW), smectite did not show a high swelling effect. However, diluting the FW and SW increased the swelling tendency of the bentonite. Nanoparticles were not able to control the swelling of the bentonite according to their larger size than the spacing of clay layers. Zirconium oxychloride was also utilized as the swelling inhibitor which showed high efficiency. Eventually, different injection scenarios were tried using synthetic carbonate core samples with specific clay contents, and the best injection plan for formation damage control was determined.

References

1.
Anderson
,
R. L.
,
Ratcliffe
,
I.
,
Greenwell
,
H. C.
,
Williams
,
P. A.
,
Cliffe
,
S.
, and
Coveney
,
P. V.
,
2010
, “
Clay Swelling—A Challenge in the Oilfield
,”
Earth Sci. Rev.
,
98
(
3–4
), pp.
201
216
.
2.
Butscher
,
C.
,
Mutschler
,
T.
, and
Blum
,
P.
,
2016
, “
Swelling of Clay-Sulfate Rocks: A Review of Processes and Controls
,”
Rock Mech. Rock Eng.
,
49
(
4
), pp.
1533
1549
.
3.
Lyu
,
Q.
,
Ranjith
,
P. G.
,
Long
,
X.
,
Kang
,
Y.
, and
Huang
,
M.
,
2015
, “
A Review of Shale Swelling by Water Adsorption
,”
J. Nat. Gas Sci. Eng.
,
27
(
Part 3
), pp.
1421
1431
.
4.
Wilson
,
M. J.
,
Wilson
,
L.
,
Patey
,
I.
, and
Shaw
,
H.
,
2014
, “
The Influence of Individual Clay Minerals on Formation Damage of Reservoir Sandstones: A Critical Review With Some new Insights
,”
Clay Min.
,
49
(
2
), pp.
147
164
.
5.
Mueller
,
B.
,
2015
, “
Experimental Interactions Between Clay Minerals and Bacteria: A Review
,”
Pedosphere
,
25
(
6
), pp.
799
810
.
6.
Ahmad
,
H. M.
,
Kamal
,
M. S.
,
Mahmoud
,
M.
,
Shakil Hussain
,
S. M.
,
Abouelresh
,
M.
, and
Al-Harthi
,
M. A.
,
2019
, “
Organophilic Clay-Based Drilling Fluids for Mitigation of Unconventional Shale Reservoirs Instability and Formation Damage
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
093102
.
7.
Han
,
X.
,
Zhong
,
L.
,
Liu
,
Y.
,
Fang
,
T.
, and
Chen
,
C.
,
2020
, “
Experimental Study and Pore Network Modeling of Formation Damage Induced by Fines Migration in Unconsolidated Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
113006
.
8.
Sameni
,
A.
,
Pourafshary
,
P.
,
Ghanbarzadeh
,
M.
, and
Ayatollahi
,
S.
,
2015
, “
Effect of Nanoparticles on Clay Swelling and Migration
,”
Egypt. J. Petrol.
,
24
(
4
), pp.
429
437
.
9.
Wilson
,
M. J.
, and
Wilson
,
L.
,
2014
, “
Clay Mineralogy and Shale Instability: An Alternative Conceptual Analysis
,”
Clay Min.
,
49
(
2
), pp.
127
145
.
10.
Al-Ani
,
T.
, and
Sarapää
,
O.
,
2008
, “
Clay and Clay Mineralogy. Physical-Chemical Properties and Industrial Uses
,”
Geologian Tutkuskeskus
,
41
, pp.
1
95
.
11.
Wang
,
C.
,
Talandier
,
J.
, and
Skoczylas
,
F.
,
2022
, “
Swelling and Fluid Transport of Re-Sealed Callovo–Oxfordian Claystone
,”
Rock Mech. Rock Eng.
,
55
(
3
), pp.
1143
1158
.
12.
Keskinen
,
R.
,
Hillier
,
S.
,
Liski
,
E.
,
Nuutinen
,
V.
,
Nyambura
,
M.
, and
Tiljander
,
M.
,
2022
, “
Mineral Composition and Its Relations to Readily Available Element Concentrations in Cultivated Soils of Finland
,”
Acta Agric. Scand. B
,
72
(
1
), pp.
751
760
.
13.
Ghasemi
,
M.
,
Moslemizadeh
,
A.
,
Shahbazi
,
K.
,
Mohammadzadeh
,
O.
,
Zendehboudi
,
S.
, and
Jafari
,
S.
,
2019
, “
Primary Evaluation of a Natural Surfactant for Inhibiting Clay Swelling
,”
J. Pet. Sci. Eng.
,
178
, pp.
878
891
.
14.
Ahmed Khan
,
R.
,
Murtaza
,
M.
,
Abdulraheem
,
A.
,
Kamal
,
M. S.
, and
Mahmoud
,
M.
,
2020
, “
Imidazolium-Based Ionic Liquids as Clay Swelling Inhibitors: Mechanism, Performance Evaluation, and Effect of Different Anions
,”
ACS Omega
,
5
(
41
), pp.
26682
26696
.
15.
Zhou
,
H.
,
Chen
,
M.
,
Zhu
,
R.
,
Lu
,
X.
,
Zhu
,
J.
, and
He
,
H.
,
2020
, “
Coupling Between Clay Swelling/Collapse and Cationic Partition
,”
Geochim. Cosmochim. Acta.
,
285
(
15
), pp.
78
99
.
16.
Meng
,
M.
,
Ge
,
H.
,
Shen
,
Y.
,
Li
,
L.
,
Tian
,
T.
, and
Chao
,
J.
,
2020
, “
The Effect of Clay-Swelling Induced Cracks on Shale Permeability During Liquid Imbibition and Diffusion
,”
J. Nat. Gas Sci. Eng.
,
83
, p.
103514
.
17.
Li
,
P.
,
Zhang
,
J.
,
Rezaee
,
R.
,
Dang
,
W.
,
Tang
,
X.
,
Nie
,
H.
, and
Chen
,
S.
,
2021
, “
Effect of Adsorbed Moisture on the Pore Size Distribution of Marine-Continental Transitional Shales: Insights From Lithofacies Differences and Clay Swelling
,”
Appl. Clay Sci.
,
201
, p.
105926
.
18.
Mehdizad
,
A.
,
Sedaee
,
B.
, and
Pourafshary
,
P.
,
2022
, “
Visual Investigation of the Effect of Clay-Induced Fluid Flow Diversion on oil Recovery, as a Low-Salinity Water Flooding Mechanism
,”
J. Pet. Sci. Eng.
,
209
, p.
109959
.
19.
Alhuraishawy
,
A. K.
,
Bai
,
B.
,
Wei
,
M.
,
Geng
,
J.
, and
Pu
,
J.
,
2018
, “
Mineral Dissolution and Fine Migration Effect on Oil Recovery Factor by Low-Salinity Water Flooding in a Low-Permeability Sandstone Reservoir
,”
Fuel
,
220
, pp.
898
907
.
20.
Muneer
,
R.
,
Hashmet
,
M. R.
, and
Pourafshary
,
P.
,
2020
, “
Fine Migration Control in Sandstones: Surface Force Analysis and Application of DLVO Theory
,”
ACS Omega
,
5
(
49
), pp.
31624
31639
.
21.
Chen
,
W. L.
,
Grabowski
,
R. C.
, and
Goel
,
S.
,
2022
, “
Clay Swelling: Role of Cations in Stabilizing/Destabilizing Mechanisms
,”
ACS Omega
,
7
(
4
), pp.
3185
3191
.
22.
Zhao
,
L.
,
Jiang
,
H.
,
Li
,
J.
, and
Li
,
J.
,
2020
, “
Pore-Scale Evaluation on the Mechanism of Water Sensitivity for Sandstones Containing Non-Swelling Clays
,”
Arab. J. Geosci.
,
13
(
2
), pp.
1
3
.
23.
Bazyari
,
A.
,
Soulgani
,
B. S.
,
Jamialahmadi
,
M.
,
Dehghan Monfared
,
A.
, and
Zeinijahromi
,
A.
,
2018
, “
Performance of Smart Water in Clay-Rich Sandstones: Experimental and Theoretical Analysis
,”
Energy Fuels
,
32
(
10
), pp.
10354
10366
.
24.
Madadizadeh
,
A.
,
Sadeghein
,
A.
, and
Riahi
,
S.
,
2022
, “
A Comparison of Different Nanoparticles’ Effect on Fine Migration by Low Salinity Water Injection for Oil Recovery: Introducing an Optimum Condition
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
013005
.
25.
Meng
,
X.
, and
Yang
,
D.
,
2019
, “
Critical Review of Stabilized Nanoparticle Transport in Porous Media
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070801
.
26.
Yang
,
S.
,
Sheng
,
Z.
,
Liu
,
W.
,
Song
,
Z.
,
Wu
,
M.
, and
Zhang
,
J.
,
2008
, “
Evaluation and Prevention of Formation Damage in Offshore Sandstone Reservoirs in China
,”
Petrol. Sci.
,
5
(
4
), pp.
340
347
.
27.
Kamal
,
M. S.
,
Mahmoud
,
M.
, and
Hanfi
,
M.
,
2018
, “
Effects of Rheological Behavior of Viscoelastic Surfactants on Formation Damage in Carbonate Rocks
,”
J. Surfactants Deterg.
,
21
(
5
), pp.
677
685
.
28.
Sharifipour
,
M.
,
Nakhaee
,
A.
, and
Pourafshary
,
P.
,
2019
, “
Model Development of Permeability Impairment due to Clay Swelling in Porous Media Using Micromodels
,”
J. Pet. Sci. Eng.
,
175
, pp.
728
742
.
29.
Xuan
,
Y.
,
Jiang
,
G.
,
Li
,
Y.
,
Yang
,
L.
, and
Zhang
,
X.
,
2015
, “
Biodegradable Oligo (Poly-L-Lysine) as a High-Performance Hydration Inhibitor for Shale
,”
RSC Adv.
,
5
(
103
), pp.
84947
84958
.
30.
Li
,
X.
,
Jiang
,
G.
,
Shen
,
X.
, and
Li
,
G.
,
2020
, “
Poly-L-Arginine as a High-Performance and Biodegradable Shale Inhibitor in Water-Based Drilling Fluids for Stabilizing Wellbore
,”
ACS Sustain. Chem. Eng.
,
8
(
4
), pp.
1899
1907
.
31.
Quainoo
,
A. K.
,
Negash
,
B. M.
,
Bavoh
,
C. B.
, and
Idris
,
A.
,
2021
, “
Natural Amino Acids as Potential Swelling and Dispersion Inhibitors for Montmorillonite-Rich Shale Formations
,”
J. Pet. Sci. Eng.
,
196
, p.
107664
.
32.
Razzaghi-Koolaee
,
F.
,
Zargar
,
G.
,
Soltani Soulgani
,
B.
, and
Mehrabianfar
,
P.
,
2022
, “
Application of a Non-Ionic Bio-Surfactant Instead of Chemical Additives for Prevention of the Permeability Impairment of a Swelling Sandstone Oil Reservoir
,”
J. Petrol. Explor. Prod. Technol.
,
12
(
6
), pp.
1523
1539
.
33.
Mehdizad
,
A.
,
Pourafshary
,
P.
, and
Sedaee
,
B.
,
2022
, “
Visual Investigation of Simultaneous Clay Swelling and Migration Mechanisms and Formation Damage Consequences Using Micromodels
,”
J. Pet. Sci. Eng.
,
214
, p.
110561
.
You do not currently have access to this content.