Abstract

Oilfield solid deposits present the major flow assurance problems in the oil and gas industry. In general, the deposits need to be accurately identified and quantified for appropriate design and successful implementation of any treatments. However, few works have been reported on the establishment of a systematic analytical procedure. This work, for the first time, presents a systematic approach that may be used to identify and quantify the composition of oilfield solid deposits, with different analytical methods been jointly used. The X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy techniques were found very helpful in identifying the composition of the investigated oilfield solid deposit, whereas thermogravimetric analysis (TGA) and microwave induced plasma atomic emission spectroscopy (MIP-AES) were the most appropriate quantification techniques. The collected sample was found to contain mainly CaCO3 and consequently, the acid treatment method that involves the use of hydrochloric acid (HCl) solution was proposed to be the most applicable and cost-effective treatment method for its remediation. The exact amount of CaCO3 scale in the oilfield system, the concentration and volume of HCl solution required for the acid treatment method need to be precisely determined to ensure the effective treatment. We believe this well-established analytical procedure will be helpful and enlightening for identification and quantification of oilfield solid deposits and thus may facilitate the effective and efficient treatments on the undesirable deposits.

References

1.
Gonzalez
,
D. L.
,
Jamaluddin
,
A. K. M.
,
Solbakken
,
T.
,
Hirasaki
,
G. J.
, and
Chapman
,
W. G.
,
2007
, “
Impact
of
Flow Assurance in the Development of a Deepwater Prospect
,”
Paper Presented at the SPE Annual Technical Conference and Exhibition
,
Anaheim, CA
.,
November
, Vol.
6
, pp.
3883
3892
.
2.
Olajire
,
A. A.
,
2015
, “
A Review of Oilfield Scale Management Technology for Oil and Gas Production
,”
J. Pet. Sci. Eng.
,
135
, pp.
723
737
.
3.
Jamaluddin
,
A. K. M.
,
Nighswander
,
J.
, and
Joshi
,
N.
,
2003
, “
A Systematic Approach for Characterizing Hydrocarbon Solids
,”
SPE J.
,
8
(
3
), pp.
304
312
.
4.
Moghadasi
,
J.
,
Jamialahmadi
,
M.
,
Müller-Steinhagen
,
H.
, and
Sharif
,
A.
,
2004
, “
Formation Damage Due to Scale Formation in Porous Media Resulting From Water Injection
,”
Paper Presented at the SPE International Symposium and Exhibition on Formation Damage Control
,
Lafayette, LA
,
February
, pp.
581
591
.
5.
Sadeq
,
D.
,
Iglauer
,
S.
,
Lebedev
,
M.
,
Smith
,
C.
, and
Barifcani
,
A.
,
2017
, “
Experimental Determination of Hydrate Phase Equilibrium for Different Gas Mixtures Containing Methane, Carbon Dioxide and Nitrogen With Motor Current Measurements
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
59
73
.
6.
Scott
,
S. L.
, and
Yi
,
J.
,
1999
, “
Flow Testing Methods to Detect and Characterize Partial Blockages in Looped Subsea Flowlines
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
154
160
.
7.
BinMerdhah
,
A. B.
,
Yassin
,
A. A. M.
, and
Muherei
,
M. A.
,
2010
, “
Laboratory and Prediction of Barium Sulfate Scaling at High-Barium Formation Water
,”
J. Pet. Sci. Eng.
,
70
(
1–2
), pp.
79
88
.
8.
Struchkov
,
I. A.
,
Rogachev
,
M. K.
,
Kalinin
,
E. S.
,
Pavlov
,
P. V.
, and
Roschin
,
P. V.
,
2018
, “
Laboratory Investigation of Organic-Scale Prevention in a Russian Oil Field
,”
SPE Prod. Oper.
,
33
(
1
), pp.
113
120
.
9.
Mpelwa
,
M.
, and
Tang
,
S. F.
,
2019
, “
State of the Art of Synthetic Threshold Scale Inhibitors for Mineral Scaling in the Petroleum Industry: A Review
,”
Pet. Sci.
,
16
(
4
), pp.
113
120
.
10.
Gupta
,
A.
, and
Anirbid
,
S.
,
2015
, “
Need of Flow Assurance for Crude Oil Pipelines: A Review
,”
Int. J. Multidiscip. Sci. Eng.
,
6
(
2
), pp.
43
49
.
11.
Vazirian
,
M. M.
,
Charpentier
,
T. V. J.
,
de Oliveira Penna
,
M.
, and
Neville
,
A.
,
2016
, “
Surface Inorganic Scale Formation in Oil and Gas Industry: As Adhesion and Deposition Processes
,”
J. Pet. Sci. Eng.
,
137
, pp.
22
32
.
12.
Liu
,
X.
,
Jungang
,
L.
,
Qianya
,
Z.
,
Jinlai
,
F.
,
Yingli
,
L.
, and
Jingxin
,
S.
,
2009
, “
The Analysis and Prediction of Scale Accumulation for Water-Injection Pipelines in the Daqing Oilfield
,”
J. Pet. Sci. Eng.
,
66
(
3–4
), pp.
161
164
.
13.
Kamal
,
M. S.
,
Hussein
,
I.
,
Mahmoud
,
M.
,
Sultan
,
A. S.
, and
Saad
,
M. A. S.
,
2018
, “
Oilfield Scale Formation and Chemical Removal: A Review
,”
J. Pet. Sci. Eng.
,
171
, pp.
127
139
.
14.
Sanni
,
O.
,
Kapur
,
N.
,
Charpentier
,
T.
, and
Neville
,
A.
,
2015
, “
Study of Surface Deposition and Bulk Scaling Kinetics in Oilfield Conditions Using an In-Situ Flow Rig
,”
NACE—International Corrosion Conference Series
,
Dallas, TX
, pp.
1
15
.
15.
Theyab
,
M. A.
, and
Yahya
,
S. Y.
,
2018
, “
Introduction to Wax Deposition
,”
Int. J. Petrochemistry Res.
,
2
(
1
), pp.
126
131
.
16.
Ellison
,
B. T.
,
Gallagher
,
C. T.
, and
Lorimer
,
S. E.
,
2000
, “
The Physical Chemistry of Wax, Hydrates, and Asphaltene
,”
SPE Repr. Ser.
,
58
, pp.
133
143
.
17.
Toma
,
P.
,
Ivory
,
J.
,
Korpany
,
G.
,
DeRocco
,
M.
,
Holloway
,
L.
,
Goss
,
C.
,
Ibrahim
,
J.
, and
Omar
,
I.
,
2006
, “
A Two-Layer Paraffin Deposition Structure Observed and Used to Explain the Removal and Aging of Paraffin Deposits in Wells and Pipelines
,”
ASME J. Energy Resour. Technol.
,
128
(
1
), pp.
49
61
.
18.
Theyab
,
M. A.
,
2018
, “
Fluid Flow Assurance Issues: Literature Review
,”
SciFed J. Pet.
,
2
(
1
), pp.
1
11
.
19.
Alharooni
,
K.
,
Barifcani
,
A.
,
Pack
,
D.
,
Gubner
,
R.
, and
Ghodkay
,
V.
,
2015
, “
Inhibition Effects of Thermally Degraded MEG on Hydrate Formation for Gas Systems
,”
J. Pet. Sci. Eng.
,
135
, pp.
608
617
.
20.
Uddin
,
M.
,
Coombe
,
D.
,
Law
,
D.
, and
Gunter
,
B.
,
2008
, “
Numerical Studies of Gas Hydrate Formation and Decomposition in a Geological Reservoir
,”
ASME J. Energy Resour. Technol.
,
130
(
3
), p.
032501
.
21.
Hammami
,
A.
, and
Ratulowski
,
J.
,
2007
, “
Precipitation and Deposition of Asphaltenes in Production Systems: A Flow Assurance Overview
,”
Asph. Heavy Oils, Pet.
, pp.
617
660
.
22.
Dahaghi
,
A. K.
,
Gholami
,
V.
, and
Moghadasi
,
J.
,
2008
, “
Formation Damage Through Asphaltene Precipitation Resulting From CO2 Gas Injection in Iranian Carbonate Reservoirs
,”
SPE Prod. Oper.
, pp.
210
214
.
23.
Merdhah
,
A. B.
,
2007
, “
Study of Scale Formation in Oil Reservoir During Water Injection—A Review
,”
Mar. Sci. Technology Semin.
, pp.
1
189
.
24.
Mackay
,
E. J.
, and
Jordan
,
M. M.
,
2005
, “
Impact of Brine Flow and Mixing in the Reservoir on Scale Control Risk Assessment and Subsurface Treatment Options: Case Histories
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
201
213
.
25.
Kamari
,
A.
,
Gharagheizi
,
F.
,
Bahadori
,
A.
, and
Mohammadi
,
A. H.
,
2014
, “
Determination of the Equilibrated Calcium Carbonate (Calcite) Scaling in Aqueous Phase Using a Reliable Approach
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
4
), pp.
1307
1313
.
26.
El-Said
,
M.
,
Ramzi
,
M.
, and
Abdel-Moghny
,
T.
,
2009
, “
Analysis of Oilfield Waters by Ion Chromatography to Determine the Composition of Scale Deposition
,”
Desalination
,
249
(
2
), pp.
748
756
.
27.
Itoro
,
O.
,
Sylvester
,
O.
, and
Appah
,
D.
,
2015
, “
Barium Sulphate Scaling Prevention
,”
Int. J. Eng. Technol.
,
5
(
4
), pp.
254
263
.
28.
Cosultchi
,
A.
,
Garciafigueroa
,
E.
,
Mar
,
B.
,
García-Bórquez
,
A.
,
Lara
,
V. H.
, and
Bosch
,
P.
,
2002
, “
Contribution of Organic and Mineral Compounds to the Formation of Solid Deposits Inside Petroleum Wells
,”
Fuel
,
81
(
4
), pp.
413
421
.
29.
Crabtree
,
M.
,
Eslinger
,
D.
,
Fletcher
,
P.
,
Miller
,
M.
,
Johnson
,
A.
, and
King
,
G.
,
1999
, “
Fighting Scale—Removal and Prevention
,”
Oilf. Rev.
, pp.
30
45
.
30.
Kang
,
P. S.
,
Hwang
,
J. Y.
, and
Lim
,
J. S.
,
2019
, “
Flow Rate Effect on Wax Deposition Behavior in Single-Phase Laminar Flow
,”
ASME J. Energy Resour. Technol.
,
141
(
3
), p.
032903
.
31.
Bui
,
T. D.
,
2015
,
Preventing Oil Spills Caused by Gas Hydrates
, http://www.archer.ac.uk/casestudies/Archer_gas_casestudy.pdf, Accessed October 10, 2019.
32.
Doelman
,
J. D. B.
,
2013
,
Control Scale to Optimize HVAC Equipment Energy Efficiency
, https://www.fmamfg.org/blog/control-scale-optimize-hvac-equipment-energy-efficiency, Accessed October 1, 2019.
33.
Lai
,
N.
,
Wen
,
Y.
,
Wang
,
Y.
,
Zhao
,
X.
,
Chen
,
J.
,
Wang
,
D.
,
Wang
,
X.
,
Yu
,
T.
, and
Jia
,
C.
,
2020
, “
Calcium Carbonate Scaling Kinetics in Oilfield Gathering Pipelines by Using a 1D Axial Dispersion Model
,”
J. Pet. Sci. Eng.
,
188
, p.
106925
.
34.
Marfo
,
S. A.
,
Opoku Appau
,
P.
, and
Kpami
,
L. A. A.
,
2018
, “
Subsea Pipeline Design for Natural Gas Transportation: A Case Study of Côte D’ivoire’s Gazelle Field
,”
Int. J. Pet. Petrochemical Eng.
,
4
(
3
), pp.
21
34
.
35.
Ilevtifieieva
,
O. A.
,
Bolotov
,
V. V.
,
Kostina
,
T. A.
,
Svechnikova
,
O. M.
,
Yuschenko
,
T. I.
,
Kaminska
,
N. I.
,
Kosareva
,
A. E.
,
Slobodyanyuk
,
L. V.
, and
Yashchuk
,
O. P.
,
2014
,
Analytical Chemistry (Qualitative Analysis) Part I the Manual for Students of Higher Schools
.
36.
Ang
,
H. H.
, and
Lee
,
K. L.
,
2005
, “
Analysis of Mercury in Malaysian Herbal Preparations
,”
J. Med. Biomed. Res.
,
4
(
1
), pp.
31
36
.
37.
Xu
,
B.
, and
Poduska
,
K. M.
,
2014
, “
Linking Crystal Structure With Temperature-Sensitive Vibrational Modes in Calcium Carbonate Minerals
,”
Phys. Chem. Chem. Phys.
,
16
(
33
), pp.
17634
17639
.
38.
Sarkar
,
A.
, and
Mahapatra
,
S.
,
2012
, “
Mechanism of Unusual Polymorph Transformations in Calcium Carbonate: Dissolution-Recrystallization vs Additive-Mediated Nucleation
,”
J. Chem. Sci.
,
124
(
6
), pp.
1399
1404
.
39.
Kodel
,
K. A.
,
Andrade
,
P. F.
,
Valença
,
J. V. B.
, and
Souza
,
D. D. N.
,
2012
, “
Study on the Composition of Mineral Scales in Oil Wells
,”
J. Pet. Sci. Eng.
,
81
, pp.
1
6
.
40.
Xyla
,
A. G.
, and
Koutsoukos
,
P. G.
,
1989
, “
Quantitative Analysis of Calcium Carbonate Polymorphs by Infrared Spectroscopy
,”
J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases
,
85
(
10
), pp.
3165
3172
.
41.
Poirier
,
L.
,
Nelson
,
J.
,
Gilleland
,
G.
,
Wall
,
S.
,
Berhane
,
L.
, and
Lopez-Linares
,
F.
,
2017
, “
Comparison of Preparation Methods for the Determination of Metals in Petroleum Fractions (1000°F+) by Microwave Plasma Atomic Emission Spectroscopy
,”
Energy Fuels
,
31
(
8
), pp.
7809
7815
.
42.
Nelson
,
J.
,
Gilleland
,
G.
,
Poirier
,
L.
,
Leong
,
D.
, and
Hajdu
,
P.
,
2016
,
Direct Multi-Elemental Analysis of Crude Oils Using the Agilent 4200/4210 Microwave Plasma-Atomic Emission Spectrometer Application Note Authors
,
Agilent Technologies, Inc.
,
Santa Clara, CA
, pp.
135
139
.
43.
Nelson
,
J.
,
Gilleland
,
G.
,
Poirier
,
L.
,
Leong
,
D.
,
Hajdu
,
P.
, and
Lopez-Linares
,
F.
,
2015
, “
Elemental Analysis of Crude Oils Using Microwave Plasma Atomic Emission Spectroscopy
,”
Energy Fuels
,
29
(
9
), pp.
5587
5594
.
44.
Eltaib
,
O. E.
, and
Rabah
,
A. A.
,
2012
, “
Crude Oil Pipeline Scale Deposition: Causes and Removal Methods
,”
Annual Conference of Postgraduate Studies and Scientific Research
,
Vol. 2: Engineering, University of Khartoum Engineering Journal
,
Sudan
, pp.
1
6
.
45.
Guo
,
B.
,
Liu
,
X.
, and
Tan
,
X.
,
2017
,
“Acidizing,” Petroleum Production Engineering
,
Gulf Professional Publishing
,
Oxford, UK
, pp.
367
387
.
46.
Azeta
,
G.
,
Joel
,
O.
, and
Kinigoma
,
A.
,
2012
, “
Identification of Formation Scale and Modeling of Treatment Fluid
,”
Res. J. Eng. Sci.
,
1
(
3
), pp.
5
10
.
You do not currently have access to this content.