Abstract

Exploring the damage differences between different coal rank coal reservoirs subjected to liquid nitrogen cooling is of great significance to the rational development and efficient utilization of coalbed methane (CBM). For this purpose, the mechanical properties, acoustic emission (AE) characteristics, and energy evolution law of lignite and bituminous coal subjected to cooling treatment were investigated based on Brazilian splitting tests. Then, pore structure changes were analyzed to reveal the differences in microscopic damage between lignite and bituminous coal after a cooling treatment. The results showed that compared with bituminous coal, the pore structure of lignite coal changed more obviously, which manifested as follows: significant increases in porosity, pore diameters, and pore area and a larger transformation from micropores and transition pores to mesopores and macropores. After the cooling treatment, the thermal damage inside lignite and bituminous coal was 0.412 and 0.069, respectively. Thermal damage reduced the cohesive force between mineral particles, leading to the deterioration of the macroscopic physical and mechanical properties. Simultaneously, denser acoustic emission ringing counts and larger accumulated ringing counts were observed after cooling. Moreover, the random distribution of thermal damage enhanced the randomness of the macrocrack propagation direction, resulting in an increase in the crack path tortuosity. With more initial defects inside coal, a more obvious thermal damage degree and wider damage distribution will be induced by cooling treatment, leading to more complicated crack formation paths and a higher fragmentation degree, such as that of lignite coal.

References

1.
Xu
,
C.
,
Qin
,
L. L.
,
Wang
,
K.
,
Sun
,
H. S.
, and
Cao
,
M. Y.
,
2021
, “
Gas Seepage Laws Based on Dual Porosity and Dual Permeability: Numerical Simulation and Coalbed Methane Extraction Practice
,”
Energy Sci. Eng.
,
9
(
4
), pp.
509
519
.
2.
Guo
,
X.
,
Zhang
,
T. Y.
,
Di
,
D. J.
,
Qin
,
X.
,
Zhai
,
Y. J.
,
Du
,
J.
, and
Mao
,
J.
,
2021
, “
Gas and Water Rate Forecasting of Coalbed Methane Reservoirs Based on the Rescaled Exponential Method
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
053002
.
3.
Liu
,
H. L.
,
Wang
,
H. Y.
,
Ning
,
N.
, and
Li
,
J. M.
,
2005
, “
Prediction of Medium and Long Term Development Trend of Coalbed Methane Resources in China
,”
Energy. China
,
27
(
7
), pp.
21
26
. https://www.cnki.com.cn/Article/CJFD2005-ZGLN200507005.htm.
4.
Liu
,
Z. D.
,
Cheng
,
Y. P.
,
Liu
,
Q. Q.
,
Jiang
,
J. Y.
,
Wei
,
L.
, and
Zhang
,
K. Z.
,
2017
, “
Numerical Assessment of CMM Drainage in the Remote Unloaded Coal Body: Insights of Geostress-Relief Gas Migration and Coal Permeability
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
487
501
.
5.
Kong
,
S. L.
,
Cheng
,
Y. P.
,
Ren
,
T.
, and
Liu
,
H. Y.
,
2014
, “
A Sequential Approach to Control Gas for the Extraction of Multi-Gassy Coal Seams From Traditional Gas Well Drainage to Mining-Induced Stress Relief
,”
Appl. Energy
,
131
, pp.
67
78
.
6.
Mohamed
,
T.
, and
Mehana
,
M.
,
2020
, “
Coalbed Methane Characterization and Modeling: Review and Outlook
,”
Energy Sources, Part A
, pp.
1
23
.
7.
Li
,
H.
,
Liu
,
Y. W.
,
Wang
,
W.
,
Liu
,
M. J.
,
Liu
,
J. J.
,
Ma
,
J. K.
, and
Gao
,
H.
,
2020a
, “
A Method of Quick and Safe Coal Uncovering by Hydraulic Fracturing in a Multibranch Radial Hole With a Coalbed Methane Well
,”
Acs Omega
,
5
(
37
), pp.
23672
23686
.
8.
Li
,
X. L.
,
Cao
,
Z. Y.
, and
Xu
,
Y. L.
,
2020
, “
Characteristics and Tends of Coal Mine Safety Development
,”
Energy Sources, Part A
, pp.
1
14
.
9.
Jiang
,
R. Z.
,
Liu
,
X. W.
,
Wang
,
X.
,
Wang
,
Q.
,
Cui
,
Y. Z.
, and
Zhang
,
C. G.
,
2021
, “
A Semi-Analytical Fractal-Fractional Mathematical Model for Multi-Fractured Horizontal Wells in Coalbed Methane Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
013002
.
10.
Xu
,
J. Z.
,
Zhai
,
C.
, and
Qin
,
L.
,
2017
, “
Mechanism and Application of Pulse Hydraulic Fracturing in Improving Drainage of Coalbed Methane
,”
J. Nat. Gas Sci. Eng.
,
40
, pp.
79
90
.
11.
Huang
,
Z. W.
,
Zhang
,
S. K.
,
Yang
,
R. Y.
,
Wu
,
X. G.
,
Li
,
R.
,
Zhang
,
H. Y.
, and
Hung
,
P. P.
,
2020
, “
A Review of Liquid Nitrogen Fracturing Technology
,”
Fuel
,
266
, pp.
1
15
.
12.
Song
,
W. Q.
,
Shi
,
X.
,
Wang
,
C. G.
,
Xu
,
J. C.
,
Chen
,
S. J.
, and
Chen
,
Z. W.
,
2020
, “
Predicting the Radial Heat Transfer in the Wellbore of Cryogenic Nitrogen Fracturing: Insights Into Stimulating Underground Reservoir
,”
Energy Sci. Eng.
,
8
(
3
), pp.
582
591
.
13.
Anonymous
,
1998
, “
Field Application of Cryogenic Nitrogen as a Hydraulic-Fracturing Fluid
,”
J. Pet. Technol.
,
50
(
3
), pp.
38
39
.
14.
Mcdaniel
,
B. W.
,
Grundmann
,
S. R.
,
Kendrick
,
W. D.
,
Wilson
,
D. R.
, and
Jordan
,
S. W.
,
1997
, “
Field Applications of Cryogenic Nitrogen as a Hydraulic Fracturing Fluid
,”
Proceedings-SPE Annual Technical Conference and Exhibition
,
OnePetro
, pp.
561
572
.
15.
Coetzee
,
S.
,
Neomagus
,
H. W. J. P.
,
Bunt
,
J. R.
,
Strydom
,
C. A.
, and
Schobert
,
H. H.
,
2014
, “
The Transient Swelling Behaviour of Large (−20 + 16 mm) South African Coal Particles During Low-Temperature Devolatilisation
,”
Fuel
,
136
, pp.
79
88
.
16.
Cai
,
C. Z.
,
Gao
,
F.
, and
Yang
,
Y. G.
,
2018
, “
The Effect of Liquid Nitrogen Cooling on Coal Cracking and Mechanical Properties
,”
Energy Explor. Exploit.
,
36
(
6
), pp.
1609
1628
.
17.
Jin
,
X. M.
,
Gao
,
J. L.
,
Su
,
C. D.
, and
Liu
,
J. J.
,
2019
, “
Influence of Liquid Nitrogen Cryotherapy on Mechanic Properties of Coal and Constitutive Model Study
,”
Energy Sources, Part A
,
41
(
19
), pp.
2364
2376
.
18.
Li
,
H. W.
,
Zuo
,
J. P.
,
Wang
,
L. G.
,
Li
,
P. F.
, and
Xu
,
X. W.
,
2020
, “
Mechanism of Structural Damage in Low Permeability Coal Material of Coalbed Methane Reservoir Under Cyclic Cold Loading
,”
Energies
,
13
(
3
), pp.
1
15
.
19.
Li
,
Q. W.
,
Yong
,
R.
, and
Wu
,
J. F.
,
2021
, “
An Integrated Assisted History Matching and Embedded Discrete Fracture Model Workflow for Well Spacing Optimization in Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
143
(
7
), p.
073004
.
20.
Wang
,
C. W.
,
Wang
,
Y. J.
,
Kuru
,
E. G.
,
Chen
,
E. D.
,
Xiao
,
F. F.
,
Chen
,
Z. H.
, and
Yang
,
D. Y.
,
2021
, “
A New Low-Damage Drilling Fluid for Sandstone Reservoirs With Low-Permeability: Formulation, Evaluation, and Applications
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
053004
.
21.
Yu
,
C. S.
,
Jiang
,
Q.
,
Su
,
N.
, and
Chang
,
L.
,
2021
, “
Predicting the Permeability of Tight Sandstone Utilizing Experimental and Mathematical Modeling Approaches
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
023007
.
22.
Hou
,
P.
,
Liang
,
X.
,
Gao
,
F.
,
Dong
,
J. B.
,
He
,
J.
, and
Xue
,
Y.
,
2021
, “
Quantitative Visualization and Characteristics of Gas Flow in 3D Pore-Fracture System of Tight Rock Based on Lattice Boltzmann Simulation
,”
J. Nat. Gas Sci. Eng.
,
89
, pp.
1
15
.
23.
Chu
,
Y. P.
, and
Zhang
,
D. M.
,
2019
, “
Study on the Pore Evolution Law of Anthracite Coal Under Liquid Nitrogen Freeze-Thaw Cycles Based on Infrared Thermal Imaging and Nuclear Magnetic Resonance
,”
Energy Sci. Eng.
,
7
(
6
), pp.
3344
3354
.
24.
Chu
,
Y. P.
,
Sun
,
H. T.
,
Zhang
,
D. M.
, and
Yu
,
G.
,
2020
, “
Nuclear Magnetic Resonance Study of the Influence of the Liquid Nitrogen Freeze-Thaw Process on the Pore Structure of Anthracite Coal
,”
Energy Sci. Eng.
,
8
(
5
), pp.
1681
1692
.
25.
Qin
,
L.
,
Li
,
S. G.
,
Zhai
,
C.
,
Lin
,
H. F.
,
Zhao
,
P. X.
,
Shi
,
Y.
, and
Bai
,
Y.
,
2020
, “
Changes in the Pore Structure of Lignite After Repeated Cycles of Liquid Nitrogen Freezing as Determined by Nitrogen Adsorption and Mercury Intrusion
,”
Fuel
,
267
, pp.
1
11
.
26.
Yan
,
H.
,
Tian
,
L. P.
,
Feng
,
R. M.
,
Mitri
,
H.
,
Chen
,
J. Z.
, and
Zhang
,
B.
,
2019
, “
Fracture Evolution in Coalbed Methane Reservoirs Subjected to Liquid Nitrogen Thermal Shocking
,”
J. Cent. South Univ.
,
27
(
6
), pp.
1846
1860
.
27.
Yan
,
H.
,
Tian
,
L.
,
Feng
,
R.
,
Mitri
,
H.
,
Chen
,
J.
,
He
,
K.
,
Zhang
,
Y.
,
Yang
,
S.
, and
Xu
,
Z.
,
2020
, “
Liquid Nitrogen Waterless Fracking for the Environmental Protection of Arid Areas During Unconventional Resource Extraction
,”
Sci. Total Environ.
,
721
, pp.
1
12
.
28.
Li
,
B.
,
Ren
,
Y. J.
, and
Lv
,
X. Q.
,
2020
, “
The Evolution of Thermal Conductivity and Pore Structure for Coal Under Liquid Nitrogen Soaking
,”
Adv. Civ. Eng.
,
2020
, pp.
1
8
.
29.
Wu
,
X. G.
,
Huang
,
Z. W.
,
Li
,
R.
,
Zhang
,
S. K.
,
Wen
,
H. T.
,
Huang
,
P. P.
,
Dai
,
X. W.
, and
Zhang
,
C. C.
,
2018
, “
Investigation on the Damage of High-Temperature Shale Subjected to Liquid Nitrogen Cooling
,”
J. Nat. Gas Sci. Eng.
,
57
, pp.
284
294
.
30.
Liu
,
S. M.
,
Li
,
X. L.
, and
Wang
,
D. K.
,
2020
, “
Numerical Simulation of the Coal Temperature Field Evolution Under the Liquid Nitrogen Cold Soaking
,”
Arabian J. Geosci.
,
13
(
22
), pp.
1
10
.
31.
Du
,
M. L.
,
Gao
,
F.
,
Cai
,
C. Z.
,
Su
,
S. J.
, and
Wang
,
Z. K.
,
2020
, “
Study on the Surface Crack Propagation Mechanism of Coal and Sandstone Subjected to Cryogenic Cooling With Liquid Nitrogen
,”
J. Nat. Gas Sci. Eng.
,
81
, pp.
1
10
.
32.
Geng
,
M.
,
Chen
,
H.
,
Chen
,
Y. P.
,
Zeng
,
L. J.
,
Chen
,
S. S.
, and
Jiang
,
X. C.
,
2018
, “
Methods and Results of the Fourth Round National CBM Resources Evaluation
,”
Coal Sci. Technol.
,
46
(
6
), pp.
64
68
.
33.
Yuan
,
J. W.
, and
Chang
,
D.
,
2020
, “
Contrast Test of Liquid Nitrogen Freeze-Thaw Cycle Cracking Effect Between Anthracite and Coking Coal
,”
Coal Sci. Technol.
,
48
(
12
), pp.
1
7
.
34.
Qin
,
L.
,
Wang
,
P.
,
Li
,
S. G.
,
Lin
,
H. F.
,
Wang
,
R. Z.
,
Wang
,
P.
, and
Ma
,
C.
,
2021
, “
Gas Adsorption Capacity Changes in Coals of Different Ranks After Liquid Nitrogen Freezing
,”
Fuel
,
292
, pp.
1
10
.
35.
Feng
,
G.
,
Kang
,
Y.
,
Wang
,
X. C.
,
Hu
,
Y. Q.
, and
Li
,
X. H.
,
2020
, “
Investigation on the Failure Characteristics and Fracture Classification of Shale Under Brazilian Test Conditions
,”
Rock Mech. Rock Eng.
,
53
(
7
), pp.
3325
3340
.
36.
Ganne
,
P.
,
Vervoort
,
A.
, and
Wevers
,
M.
,
2007
, “
Quantification of Pre-Peak Brittle Damage: Correlation Between Acoustic Emission and Observed Micro-Fracturing
,”
Int. J. Rock Mech. Min.
,
44
(
5
), pp.
720
729
.
37.
Majewska
,
Z.
, and
Zietek
,
J.
,
2007
, “
Changes of Acoustic Emission and Strain in Hard Coal During Gas Sorption-Desorption Cycles
,”
Int. J. Coal Geol.
,
70
(
4
), pp.
305
312
.
38.
Zhang
,
R.
,
Liu
,
J.
,
Wang
,
Z. Q.
,
Lu
,
S. Q.
, and
Wang
,
C. F.
,
2020
, “
Experimental Investigation on Multi-Fractal Characteristics of Acoustic Emission of Coal Samples Subjected to True Triaxial Loading-Unloading
,”
Fractals
,
28
(
5
), p.
2050092
.
39.
Gao
,
L.
,
Gao
,
F.
,
Xing
,
Y.
, and
Zhang
,
Z. Z.
,
2020
, “
An Energy Preservation Index for Evaluating the Rockburst Potential Based on Energy Evolution
,”
Energies
,
13
(
14
), pp.
1
16
.
40.
Gao
,
L.
,
Gao
,
F.
,
Zhang
,
Z. Z.
, and
Xing
,
Y.
,
2020
, “
Research on the Energy Evolution Characteristics and the Failure Intensity of Rocks
,”
Int. J. Min. Sci. Technol.
,
30
(
5
), pp.
705
713
.
41.
Zhang
,
Y. L.
,
Sun
,
Q.
,
He
,
H.
,
Cao
,
L. W.
,
Zhang
,
W. Q.
, and
Wang
,
B.
,
2017
, “
Pore Characteristics and Mechanical Properties of Sandstone Under the Influence of Temperature
,”
Appl. Therm. Eng.
,
113
, pp.
537
543
.
42.
Sun
,
Y.
,
Zhai
,
C.
,
Ma
,
H. T.
,
Xu
,
J. Z.
,
Yu
,
X.
, and
Wang
,
Y.
,
2021
, “
Changes of Coal Molecular and Pore Structure Under Ultrasonic Stimulation
,”
Energy Fuels
,
35
, pp.
9847
9859
.
43.
Zhang
,
J. J.
,
Wei
,
C. T.
,
Zhao
,
C. J.
,
Zhang
,
T.
,
Lu
,
G. W.
, and
Zou
,
M. J.
,
2021
, “
Effects of Nano-Pore and Macromolecule Structure of Coal Samples on Energy Parameters Variation During Methane Adsorption Under Different Temperature and Pressure
,”
Fuel
,
289
, pp.
1
14
.
44.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci.
,
14
(
8
), pp.
395
402
.
45.
Poulet
,
T.
,
Karrech
,
A.
,
Regenauer-Lieb
,
K.
,
Fisher
,
L.
, and
Schaubs
,
P.
,
2012
, “
Thermal-Hydraulic-Mechanical-Chemical Coupling With Damage Mechanics Using ESCRIPTRT and Abaqus
,”
Tectonophysics
,
526
(
SI
), pp.
124
132
.
You do not currently have access to this content.